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ABSTRACT

When two fluids come into contact an interface is formed between them. The surface

tension of this interface plays an important role in determining the shape of the surface and

can be lowered by the presence of surfactants. In dynamic interfacial fluid problems surface

tension gradients due to surface convection of the surfactant can develop. These gradients

result in Marangoni stress on the surface which affects surface velocities and thus bulk fluid

velocities. These flows are relevant in enhanced oil recovery; dip and spin coating tech-

nologies; condensate formation on heat exchangers; emulsions in polymerization, biofuels,

pharmaceuticals and food processing; and any number of microfluidics technologies, to name

a few examples. The vast applications make the understanding of surface tension effects

on interfacial flows important. A theoretical understanding exists for how surface tension

gradients and Marangoni stress affect interfacial fluid flows, but direct comparisons between

experiments and theory is less common in the literature. In this thesis two fluid dynamics

problems involving drops are studied. In the first an aqueous drop containing surfactant

is placed in a horizontal rotating cylindrical tank half-filled with oil. A film of oil forms

between the drop and wall, and the addition of surfactant affects the film thickness, drop

shape, and onset of drop breakup. The second problem involves an aqueous drop containing

surfactant settling in oil under gravity where surface tension gradients affect the terminal

velocity or drag of the drop. Using in-house surface tension measurements, surfactant ad-

sorption and desorption models are developed. These models are then used in analytical and

numerical analyses of the aforementioned fluid dynamics problems and compared to exper-

iments. The results demonstrate the potential to use experimentally determined surfactant

transport parameters to explain and in some cases predict experimental observations.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Interfacial fluid dynamics problems are very common and important in a number of

engineering applications. Here an interfacial fluid flow involves a flow where two typically

immiscible fluids are in contact and form an interface between them. These flows can contain

drops or bubbles moving in another bulk fluid, liquid films flowing or spreading on a substrate,

and foams, to name some examples. Phenomena that occur at these interfaces can have

a significant impact on the bulk flows and thus the engineering applications themselves.

A particularly important characteristic of an interface between two fluids is its interfacial

tension γ (or, synonymously, surface tension).

Surface tension is commonly expressed in dimensions of force per length and describes a

resistance to change in curvature on a surface in the presence of another force such as gravity.

Alternatively surface tension is sometimes expressed in dimensions of energy per area where

it is considered the energy required to increase the local surface area of the surface. For

example consider the two pendant drops suspended from a syringe needle in Fig. 1.1. Both

drops are aqueous and are surrounded by canola vegetable oil. However in Fig. 1.1(a) the

surface tension is an order of magnitude larger than in Fig. 1.1(b). The smaller surface

tension in Fig. 1.1(b) allows the drop to noticeably deform (or increase its surface area)

relative to a sphere due to gravity in comparison to the drop in Fig. 1.1(a).

Some example engineering applications involving interfacial flows where surface tension

is important are: enhanced oil recovery methods where liquids or gases are used to displace
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a) b) 

𝛾 = 42 𝑚𝑁 𝑚−1 𝛾 = 2.6 𝑚𝑁 𝑚−1 

0.72 𝑚𝑚 

Figure 1.1 Two aqueous pendant drops are shown suspended from a syringe needle and
surrounded by canola oil. In (a) the drop contains 0.005 mM sodium oleate
and has a volume of 6.2 µl. In (b) the drop contains 1.0 mM sodium oleate
and has a volume of 2.1 µl. Their respective surface tension values are
shown.

crude oil in porous media (1); remediation of contaminated soil (2); coating flows such as

dip and spin coating where the goal is to create thin uniform films (3); condensate forming

on heat fins in air conditioners and other heat exchangers (4); emulsions in polymerization

reactions (5), biofuels (6), pharmaceuticals (7) and food products (8); contact lenses where

a thin tear film forms between the eye and the lens (4); microfluidic devices where small

drops or bubbles can be formed and manipulated to serve any number or purposes (9). The

ubiquity of interfacial fluid dynamics in industrial applications makes its study very relevant

and important.

The surface tension of an interface can be lowered by the presence of surface-acting

agents i.e. surfactants as demonstrated in Fig. 1.1. In many of the above engineering

applications the presence of surfactants can facilitate interfacial phenomena such as drop

deformation, break up and spreading (10; 11; 12; 13). Surfactants are often amphiphilic
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Figure 1.2 Structural formulae for the surfactants a) sodium oleate and b) ethylene gly-
col monododecyl ether are shown. The hydrophilic and hydrophobic portions
of each surfactant are labeled.

molecules i.e. they contain both hydrophobic (water-fearing) and hydrophilic (water-loving)

properties. They can be non-ionic molecules, or they can be anionic or cationic. These

surfactants can exist as liquids or powders, and they can be chosen based on biocompatibility,

environmental concerns and other factors. Figure 1.2 gives example structural formulae for

the anionic sodium oleate and the non-ionic ethylene glycol monododecyl ether. Both of

these surfactants have a long hydrocarbon chain or ”tail” that is hydrophobic, and a ”head”

that is hydrophilic. The counter ions of ionic surfactants distribute in order to balance the

net charge when dissociated in water. In the presence of an air-water or oil-water interface,

the surfactant has the potential to adsorb to the surface. This is not to be confused with

absorption which describes material entering the volume of another. If it does adsorb, it

will be oriented such that its hydrophobic tail is primarily in the non-aqueous phase and the

hydrophilic head mostly remains in the aqueous phase. The presence of the surfactant at

the interface will generally lower the surface tension.

The surface tension over an interface containing surfactants does not need to be a constant

value, and in fact it rarely is when considering dynamic flow problems. Because the fluid-
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fluid surface is itself mobile, it is possible for surface convection to distribute any adsorbed

surfactant non-uniformly, resulting in surface tension gradients. The presence of surface

tension gradients can introduce a stress called the Marangoni stress (14) which can have a

significant impact on these engineering applications. In order to effectively design engineering

systems involving interfacial fluid dynamics, understanding the effects of surfactants and

surface tension gradients is necessary.

The key to interfacial fluid dynamics problems is the interfacial stress equation. Consider

two immiscible fluids denoted (1) and (2) with a density difference ∆ρ. At the surface formed

between the two fluids there is a jump in stress defined by (15)

n · σ1 − n · σ2 = −∇sγ + γn (∇s · n) (1.1)

where σk = −pkI+τk is the stress tensor, γ is surface tension, and ∇s = (I−nn) ·∇ is the

surface gradient operator. Additionally n is the surface normal vector and I is the identity

matrix. In the definition of the stress tensor pk = Pk − ρkgh is the modified pressure and

τk = µk[∇uk + (∇uk)T ] is the viscous stress tensor caused by the fluid velocity uk. The

left-hand side of eq. 1.1 is the jump in stress across the surface in the plane tangent to the

surface. On the right-hand side the the second term is often called the capillary pressure due

to surface tension and the curvature of the surface, and the first term defines the Marangoni

stress.

In the pendant drop examples in Fig. 1.1, there is no fluid motion and thus the viscous

stress tensor goes away on the left-hand side of eq. 1.1. Since surface tension gradients

cannot develop without fluid motion only the capillary pressure remains on the right, and

so eq. 1.1 reduces to the Young-Laplace equation p1 − p2 = γn (∇s · n). This equation is

the basis for the pendant drop method of measuring surface tension (16; 17) which will be

used later in this thesis. When the fluids are not at rest, both the viscous stress component

of σ and the Marangoni stress due to gradients in γ can become important. The Marangoni
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stress acts tangentially in the direction of increasing surface tension, allowing it to impact

the drag over the surface. This means, for a dynamic flow, gradients in surface tension can

have significant impacts on surface velocities which will in turn impact the velocities in fluids

(1) and (2). Understanding this term is key in predicting the fluid dynamics of interfacial

flow problems involving surface tension gradients.

For a system with uniform temperature, the surface tension is typically only affected by

the presence of surfactants. How the presence of surfactants affects surface tension is then

described by an equation of state γ = f(Γ) where Γ is the local amount of surfactant on

the surface per area. In analyzing an interfacial flow it is convenient to consider gradients

in Γ rather than gradients in γ. Then the Marangoni stress term in eq. 1.1 is rewritten like

dγ
dΓ
∇sΓ where now the derivative of the equation of state is explicitly present. Thus the form

of the equation of state is extremely important and provides the coupling between the fluid

dynamics and the presence of surfactants.

Furthermore the manner in which surfactants get to the surface will dictate whether

gradients in Γ over the surface will develop and to what extent. Surfactants residing in

the bulk of either or both fluid (1) and/or (2) can adsorb as well as desorb to and from

the surface over time. They can also travel along the surface by surface diffusion and/or

surface convection. Additional complications in the mass transfer process include surfactant

diffusion and convection in the bulk of either phase, as well as partial depletion of bulk

surfactant concentrations if the amount of adsorbed surfactant on the surface is relatively

significant. On top of choosing an appropriate equation of state γ = f(Γ) for determining

the form of the Marangoni stress term, appropriately modeling this mass transfer process is

necessary when attempting to model interfacial flow problems.

While much theoretical work has been done with interfacial fluid dynamics problems

involving films, drops and bubbles, direct comparisons between experimental and theoretical

results when significant interfacial tension gradients develop are less common. Doing this

requires determining surfactant adsorption and desorption rates which dictate how surfactant
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accumulates on the surface. The overall goal of this thesis is to use experimentally determined

surfactant transport parameters in theoretical analyses of a couple interfacial flow problems

to explain certain phenomena and in some cases make qualitative comparisons. The hope is

to advance the ability to use theoretical models as engineering tools by demonstrating their

ability to describe real systems.

Before the the fluid dynamics problems can be handled, surface tension and surfactant

transport models need to be developed. This begins in chapter 2 where methods for mea-

suring surface tension with the pendant drop method and for predicting equilibrium surface

tension values are presented. In chapter 3 this analysis is expanded to include situations

where enough surfactant leaves the bulk volume for the drop surface that the bulk concen-

tration becomes significantly lower at equilibrium. The parameters that govern equilibrium

surface tension values are then used in chapter 4 where transient surface tension values are

used to estimate surfactant adsorption and desorption rates. The analyses from chapters 2,

3 and 4 then result in surfactant sorption kinetics models that can be used in fluid dynamics

problems.

In this thesis two flow problems involving drops will be studied. The first in chapter

5 will involve a single aqueous drop in a horizontal rotating cylinder half-filled with an

oil. In this problem shear caused by the inner wall of the cylinder results in a thin film

of oil residing between the drop and the cylinder wall. Depending on the surfactant and

surfactant concentration present in the drop, surface tension gradients cause changes in the

film thickness and drop shapes as well as induce tail streaming in the drops in some cases.

Using the experimentally determined surfactant transport parameters the film thicknesses

and drop shapes are predicted numerically with the thin film equations and compared with

experiments with some agreement. The resulting surface velocity and surface surfactant

concentration profiles from the numerical results are used to further explain phenomena

observed in experiments.
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In chapter 6 the second fluid dynamics problem is a buoyancy-driven surfactant-laden

aqueous drop falling in a more viscous liquid. Like in the horizontal cylinder problem above,

surface tension gradients develop on the drop surface when the drop contains surfactant.

However the fluid velocities in some cases can be several orders of magnitude smaller than

those in the horizontal cylinder problem, potentially making additional mass transport pro-

cesses such as surface diffusion important. Again experimentally determined sorption kinetics

are used in analytical and numerical analyses of the flow problem. Decent agreement is found

between experimental and predicted drop terminal velocities using a single set of surfactant

transport parameters for certain cases.

In the next section a literature review of relevant work on flows containing drops and thin

films will be presented, showing both the great interest and volume of work on the topic over

the past century as well as how work contained in this thesis fits into the body of knowledge.

1.2 Literature review

Nearly a century ago an important set of experiments were performed by W.N. Bond

and D.A. Newton (18). The researchers observed the terminal velocities of air bubbles

rising in water and syrup, water drops falling in castor oil, and mercury drops falling in

syrup. If their experiments were ideal they would have observed drop and bubble velocities

following the Hadamard-Rybczynski drag law, Fd,HR = 2πµobU
(

2+3ξ
1+ξ

)
, where U is the

velocity, µo is the dynamic viscosity of the surrounding fluid, b is the drop or bubble radius,

and ξ = µi/µo is the ratio of the drop viscosity to the surrounding fluid viscosity (19; 20).

This law describes the drag experienced by a fluid sphere translating in another fluid at low

Reynolds number Re∗ = 2ρobU/µo where ρo is the density of the surrounding fluid. The

superscript ’∗’ denotes dimensionless quantities throughout this thesis. For large drops and

bubbles Bond and Newton did see agreement between the Hadamard-Rybczynski drag law

and experiments. However for small drops and bubbles their experiments followed the Stokes
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𝑈

𝑈𝑠𝑡
 

Figure 1.3 An example figure from W.N. Bond and D.A. Newton (18). The vertical
axis is the drop velocity normalized by the Stokes velocity Ust for a solid
sphere with equivalent size and density, and the horizontal axis is the drop
radius.

drag law, Fd,St = 6πµobU (21), as seen in Fig. 1.3 for example. This drag law describes how

solid spheres translate in another fluid at low Re∗, and is identical to Fd,HR when ξ →∞.

This behavior was consistent for each fluid-fluid system they studied, and for each data

set there was a transition region where velocities fell between the Stokes and Hadamard-

Rybczynski predictions. Using some dimensional analysis the authors suspected the tran-

sition coincided with critical values of what is now commonly called the Bond number,

Bo∗ = ∆ρgb2

γ
, (also sometimes called the Eötvös number Eo∗) where ∆ρ is the density

difference between the sphere and the surrounding fluid and g is the gravitational acceler-

ation. They speculated that the transition from fluid to solid sphere behavior may be due

to contamination (surfactants) in their experiments, or the observation that surface tension

measurements changed with time (an indication of the presence of surfactants). They also

considered the transition may have to do with changes in viscosity.
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Later in 1947 V.G. Levich provided some analysis for how surfactants and surface tension

can impose a tangential stress on the surface (22). Levich explained that as a drop translates

in another continuous fluid containing surfactants, those surfactants in the continuous phase

will adsorb to the drop surface. Due to the drop’s mobile surface, convection will then sweep

some surfactant towards the trailing end of the drop, forming a greater concentration in the

rear than the front. The result is a surface tension gradient, creating a tangential stress

(Marangoni stress) which acts opposite the direction of the surface velocity. The surface

velocity slows down, creating more drag and slowing the drop’s terminal velocity. Levich

simplified his analysis by assuming the surfactant concentration over the interface was nearly

uniform so that surface convection could be neglected. In this limit he proposed several

solutions depending on if the limiting mass transfer mechanism was diffusion of surfactant

in the bulk, adsorption of surfactant from the bulk, or surface diffusion of surfactant.

Around the same time in 1942 L. Landau and B. Levich (not to be confused with V.G.

Levich) considered another interfacial problem also effected by surface tension (23). They

considered the film of liquid that remains on a plate as it is withdrawn from a bath of

liquid. They found relationships between the film thickness, withdrawal speed, the density

and viscosity of the liquid, and surface tension. More specifically they found a relationship

between the film thickness and the capillary number Ca∗ = µoU/γ where U here is the

speed at which the plate is withdrawn. Later D.A. White and J.A. Tallmadge improved

the solution of Landau and Levich by including gravity corrections (24). In an analogous

problem, F.P. Bretherton considered the film of liquid that forms between a bubble moving

in a tube and the tube wall in 1961 (25). This problem has significance to engineering

applications such as microfluidic devices as shown in Fig. 1.4 from ref. (26). Bretherton

found similar relationships for film thickness. In the current literature these two problems are

commonly referred to as the Landau-Levich and Bretherton problems, respectively. While

they are similar, their dissimilar domains lead to crucial differences in their flow. Specifically

a single stagnation point develops on the surface in the Landau-Levich problem while two



www.manaraa.com

10

100 𝜇m 

Figure 1.4 Experimental image of air bubbles driven by constant pressure through a
microfluidic channel containing water with 0.015 wt% polyacrylamide and
0.10 wt% sodium lauryl sulfate (26).

develop in the Bretherton problem (27). This has a significant impact on how surfactants

can influence either problem.

Similar to how researchers found disagreements between experiments and theory early

on in the buoyancy-driven drop and bubble problem, discrepancies between theory and ex-

periments were found in the thin film problems. Specifically at low Ca∗ experimental film

thicknesses were found to be many times larger than predicted by the original theory of

Landau and Levich and Bretherton (24; 25; 28). It would be shown later that this discrep-

ancy is due to the presence of surfactants and, in the case of the Bretherton problem, the

accumulation of surfactant at the rear of the bubbles and resulting surface tension gradients.

Since the middle of the 20th century, the impact of surfactants on interfacial fluid dy-

namics problems like the buoyancy-driven drop or bubble, Landau-Levich and Bretherton

problems introduced above have been investigated extensively. For the buoyancy-driven drop

and bubbles problems, advancements in camera technologies allowed for new experiments

that could visualize the internal circulation in drops. Many cite P. Savic in 1953 as being

the first to experimentally observe what is known as a stagnant cap region in a drop surface



www.manaraa.com

11

stagnant cap 

Figure 1.5 Experimental image of a drop of carbon tetrachloride with a 6 mm diame-
ter moving through a sugar solution (translating down in the image). The
streamlines are visualized using dye. Note the accumulation of die at the
rear where the stagnant cap resides.

with surface contamination (29). In his analysis Savic considered surface convection to be

the dominant mass transfer mechanism, leading to such an extreme build-up of surfactant

at the rear that the resulting large surface tension gradients caused the surface velocity to

approach zero there, hence the stagnant cap name. Additional experimental evidence for a

stagnant cap was observed by R.H. Magarvey and J. Kalejs (30) (Fig. 1.5) as well as T.J.

Horton et al (31) in the 1960s. Of particular note is the observation by Horton et al that

very small amounts of surface contamination can cause the internal circulation to noticeably

deviate from the Hadamard-Rybczynski circulation.

The stagnant cap theory was expanded in 1966 by R.F. Davis and A. Acrivos where

they tried to predict the size of the stagnant cap region based on the difference in surface

tension from the front to the rear of the drop (32). A similar analysis was preformed by He

et al in 1991 but using a more accurate non-linear equation of state as opposed to the linear
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relationship used by Davis and Acrivos (33). The choice of equation of state is extremely

important as briefly mentioned earlier in the introduction. In 1983 J.A. Holbrook and M.D.

LeVan performed an analysis that did not assume the existence of a stagnant cap nor a nearly

uniform surface concentration of surfactant (34; 35). However they implemented a linear

framework to describe relationships between surface tension, bulk surfactant concentration

and surface surfactant concentration. In 1995 J. Chen and K.J. Stebe performed a similar

analysis but with non-linear equations of state, non-linear adsorption models (36). Their

result is one of the more complete analytical solutions in the current literature and it will be

used with some modifications later in this thesis. They considered the coupling of the jump

in shear stress across the drop surface to a surface mass balance which included surface

convection (but no surface diffusion) and a non-linear adsorption-desorption source term.

Additionally they allowed for non-ideal interactions between surfactant molecules.

The discrepancy in film thicknesses in the Bretherton problem was first analyzed in 1989

and 1990 by G.M. Ginley & C.J. Radke (37) and J. Ratulowski & H.-C. Chang (38) where

Marangoni stress was introduced. However in the analysis of Ginley and Radke even thinner

films were predicted. Indeed F. Wassmuth et al in 1993 used finite difference approximations

of the thin film equations to show that it is possible to observe films that are smaller or larger

than a case without surfactant (39). Similar findings have been found in numerical studies

by S.N. Ghadiali & D.P. Gaver III (40) and H. Fujioka & J.B. Grotberg (41), lending more

credibility to the possibility that both film thinning and film thickening relative to a no-

surfactant case is possible. Unfortunately there have not been many experimental studies to

compare to these analyses.

In the surfactant-laden drop and bubble problem A.H.P Skelland et al measured the

velocities of chlorobenzene falling in water containing anionic, cationic and non-ionic surfac-

tants in 1987 (42). They found some agreement with available empirical relationships when

using the surface tension of corresponding static drops. Measuring the velocities of bubbles

rising in aqueous surfactant solutions, K. Malysa et al made observations as to how much
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surfactant was necessary to impact velocities (43). They estimated the surface coverage on

the bubbles surface as it detached from a nozzle. Defining the surface coverage as θ = Γ/Γ∞

where Γ∞ is the maximum possible surface concentration for a monolayer, they found that

only about θ > 0.1 was necessary to maximize the effect of Marangoni stress.

There have been more recent experimental studies of surfactant-laden drops and bubbles,

although there are not many due to the difficulty in analyzing the problem. N. Paul et al

in 2015 tried to use settling drop velocities as a method for estimating the adsorption on

drop surfaces (44). To do this they observed 1-octanol drops rising in aqueous solutions

of sodium dodecyl sulphate (SDS) or Triton-X 100. Then using previously determined re-

lationships between bulk surfactant concentration and surface coverage, they determined a

relationship between surface coverage and terminal velocity. This analysis has several draw-

backs, however. First the Langmuir isotherm was used to determine a relationship between

bulk concentration and surface coverage when it has been shown that better models are

available for SDS and Triton-X 100 (45; 46). Second they assume a uniform surface coverage

is sufficient to characterize the distribution on a translating drop which may not acceptable.

Third only one drop size was investigated which is clearly an important parameter in the

surfactant-laden drop and bubble problem (18; 47).

In one of the more complete experimental analyses, R. Palaparthi et al observed air

bubbles rising in glycerol-water mixtures containing hexaethylene glycol monododecyl ether

(C12E6), a non-ionic surfactant (48). They used non-linear adsorption kinetics similar to

Chen and Stebe (36). In the first half of their work they provide theoretical and numerical

results for the stagnant cap problem with mixed diffusion and sorption kinetics. In the

second half some agreement between experiments and numerical results using experimentally

determined sorption kinetics was found. Unfortunately their viscous water-glycerol mixtures

made diffusion the rate limiting step in the mass transfer process, making measurements of

the sorption rate constants difficult. For a couple experimental cases, they compared the

numerical results using several guesses for sorption rate constants and found a range of rates
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that fit. As a result the authors concluded that settling bubble experiments could be used

to estimate sorption kinetics.

While it is clear that much work has been done, direct comparisons between experiments

and theory involving interfacial flows with significant surface tension gradients is less common

in the literature. Comparing ideal theoretical models to real experimental results is a difficult

task, and in the following chapters we will attempt to further the ability to make these

comparisons.
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CHAPTER 2. PATTERN SEARCH METHODS FOR

PENDANT DROPS: ALGORITHMS FOR RAPID

DETERMINATION OF SURFACE TENSION AND

SURFACTANT TRANSPORT PARAMETERS

Modified from a paper published in Colloids Surf. A1

Andrew R. White2, Thomas Ward3

Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

2.1 Introduction

In this chapter we outline a process to apply pattern search methods to estimate equilib-

rium surface tension and surfactant transport parameters from pendant drops. The technique

may be extended to other systems where robust minimization or search methods are required

to estimate multiple unknown parameters. There are unique advantages with utilizing this

technique to estimate properties of surfactant systems where minimization occurs between

a known (experimental drop shapes or surface tension data) and unknown (Young-Laplace

solution or isotherms) set of data, of which pendant drop analysis is an example. The main

advantage stems from the fact that estimates for the unknown properties are produced by

minimizing the common `2−norm between the known and unknown data sets which can be

used to formulate an objective function used for minimization. To validate the technique

1A.R. White, T. Ward. Colloids Surf. A 485 (2015) pp. 1-10.
2Primary researcher and author
3Corresponding author. E-mail: thomasw@iastate.edu
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for measuring surface tension we consider pendant drops of aqueous sodium oleate (SO)

and aqueous sodium dodecyl sulfate (SDS) in mineral oil, along with several other classi-

cal data sets from the literature. This will be followed by implementation of the pattern

search method to fit the equilibrium surface tension data to the Frumkin isotherm which

requires the simultaneous minimization of 3 unknown parameters used to quantify surfactant

transport.

The analysis begins with estimates of surface tension data. To generate surface tension

data an axisymmetric drop shape analysis (ADSA) for pendant drops will be considered.

This generally consists of fitting drop shapes prescribed by the Young-Laplace equation to

experimentally measured drop shapes. There are two unknown parameters in the ADSA

process: the surface tension and the curvature. Constructing the objective function is the

most robust method for determining the best fit using ADSA. But it is also the most costly

since the numerically generated solution to the Young-Laplace equation requires solving

differential equations in multiple dimensions. Furthermore, the range of surface tension and

curvature values must be bounded in order to determine the region where the minimum

exists along with choosing an appropriate size for incrementing the independent variables.

Within the past few decades gradient-based solvers have been developed to perform the

ADSA minimization process. The most common example of such a method is through

implementation of the well known Newton-Raphson scheme (16). To perform the analy-

sis the objective function is expanded in a Taylor series about the unknown parameters.

Unfortunately gradient-based solvers too are computationally intensive, requiring the addi-

tional calculation of gradients to update the unknown in the iterative process. Additionally

gradient-based solvers are not guaranteed to converge and tend to diverge if the initial guess

is not sufficiently close to the best fit.

Instead we apply a pattern search method for determining best fits of the Young-Laplace

equation. The pattern search method is an example of a direct search method which is

more commonly used for performing modern error minimization. Direct search methods are
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less computational expensive than gradient based methods because they typically do not

require any additional mathematical manipulation of an objective function. Drawbacks in

utilizing these methods exist because they are not necessarily robust in terms of convergence

to a local minimum. An example of a direct method is the Nelder-Mead simplex method

(49; 50), generally recognized as the first non-gradient based search method. With this

method, minimization is achieved by reaching the local minimum in a region usually defined

by some p+ 1 points where p is the number of unknowns, or dimensions. Points are updated

by determining minima at points reflected through the line formed at the other p points.

This method has been used in (51) where the MATLAB function fminsearch was used to

perform the implementation with good results. Although the Nelder-Mead simplex method

is capable of producing good results there are no guarantees that it converges to a local

minimum.

On the other hand the pattern search method has been shown through robust math-

ematical analysis to consistently converge to a local minimum the details of which were

described in (52; 53). A brief analysis of why the pattern search method converges is as

follows: an objective function based on the `2−norm in multiple dimensions can possess a

local minimum because the distance measured between the computational and experimental

data di is squared. For example, in one dimension let the distance between a point generated

numerically by the Young-Laplace equation and one measured experimentally be a function

of only the surface tension and be denoted di(γn). Now bound di(γn) above and below by

adding and subtracting some small-equidistant amount δ, respectively, from the unknown

quantity γn. Then the error at step n is bounded by γn ± δ i.e.
√
di(γn)2 <

√
di(γn ± δ)2.

This condition forms the basis for the pattern search algorithm. We will explore how to

implement this method, and discuss situations where the condition may break down in re-

gards to determining equilibrium surface tension and surfactant transport parameters, in the

following sections.
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2.2 Pattern search algorithm

2.2.1 General pattern search algorithm

We begin a discussion of the general pattern search algorithm that may be used to gener-

ate simultaneous estimates for multiple unknown parameters. The pattern search technique

relies on the existence of a local minimum in an objective function for a set of unknown

quantities. We will show that objective function estimates using an `2−norm are sufficient

to satisfy this criteria for determining equilibrium surface tension and surfactant transport

parameters under certain conditions. The `2−norm has been a standard for automated cal-

culation of surface tension (16) and errors estimated using the `2−norm can be generalized to

any type of curve fitting method. The `2−norm is simply defined by the Euclidean distance

ψ(c1,n, c2,n, . . . , cp,n) =

√√√√ I∑
i=1

di(c1,n, c2,n, . . . , cp,n)2, (2.1)

where ψ(c1,n, c2,n, . . . , cp,n) is the objective function of p unknowns c1,n, c2,n, . . . , cp,n which

also serve to denote coordinates (c1,n, c2,n, . . . , cp,n). The variable di is used to denote the

distance measured between I points of some numerically generated and experimentally gener-

ated data sets at specific positions i along an axis of the independent variable at minimization

step n.

The general algorithm goes as follows: Starting with initial guesses for the coordinates

(c1,0, c2,0, . . . , cp,0), we update these points to find a trajectory that leads to the local error

minimum. For the pattern search algorithm this is achieved without the use of calculating

gradients by determining the minimum in the set,



www.manaraa.com

19

A = {ψ(c1,n + L1∆c1,n, c2,n + L1∆c2,n, . . . , cp,n + L1∆cp,n),

ψ(c1,n + L2∆c1,n, c2,n + L1∆c2,n, . . . , cp,n + L1∆cp,n),

. . .

ψ(c1,n + L3∆c1,n, c2,n + L3∆c2,n, . . . , cp,n + L3∆cp,n)} (2.2)

where [L1, L2, L3] = [−1, 0, 1]. There are 3p elements in set A if one includes the initial

coordinates at each minimization step (c1,n, c2,n, . . . , cp,n). Let β1, β2, . . . , βp = 1, 2 or 3 be

used to denote the indices Lβ1 , Lβ2 , . . . , Lβp corresponding to the objective function minimum

at step n in set A located at coordinates (c1,n+Lβ1∆c1,n, c2,n+Lβ2∆c2,n, . . . , cp,n+Lβp∆cp,n).

If the elements of the vector M = (M1,M2, . . . ,Mp) = (Lβ1 , Lβ2 , . . . , Lβp) contain these

values then new guesses at step n+ 1 for the unknowns can be written as



c1,n+1

c2,n+1

. . .

cp,n+1


=



c1,n

c2,n

. . .

cp,n


+



M1∆c1,n+1

M2∆c2,n+1

. . .

Mp∆cp,n+1


. (2.3)

The step sizes ∆c1,n+1,∆c2,n+1, . . .∆cp,n+1 remain constant until the minimum of set

A produces the zero vector i.e. β1 = β2 = · · · = βp = 2 such that M = 0. If this

occurs then the step size is uniformly reduced by φ i.e. ∆c1,n+1,∆c2,n+1, . . .∆cp,n+1 =

φ∆c1,n+1, φ∆c2,n+1, . . . φ∆cp,n+1 with 0 < φ < 1 and the procedure continues. The iterative

process is completed when one or several of the unknowns meet a user defined minimum error

requirement between two consecutive steps |c1,n+1 − c1,n| or |c2,n+1 − c2,n| or ... or |cp,n+1 −

cp,n| � 1.
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2.2.2 Log scaling

In situations where one or more of the p unknowns contains values that can span multiple

orders of magnitude it is possible to use a log scale. For any unknowns to be treated in this

manner its coordinates for ψ in A would be written as,

A = {ψ(c1,n10L1∆c1,n , c2,n10L1∆cp,n , . . . , , cp,n10L1∆cp,n),

ψ(c1,n10L2∆c1,n , c2,n10L1∆cp,n , . . . , , cp,n10L1∆cp,n),

. . .

ψ(c1,n10L3∆c1,n , c2,n10L3∆cp,n , . . . , cp,n10L3∆cp,n)}.

A base of 10 is used for this example but any value can be used with the algorithm. The

rest of the algorithm is the same with the exception being the new guesses are written:



c1,n+1

c2,n+1

. . .

cp,n+1


=



c1,n10M1∆c1,n+1

c2,n10M2∆c2,n+1

. . .

cp,n10Mp∆cp,n+1


.

The iterative process is complete when the error is minimized based on user defined values.

2.2.3 Implementation

Implementation requires determining the set of values at each set of coordinates that

are included in A. Any looping algorithm will produce the desired set of values. What is

important is how the coordinates are addressed. For this step in the algorithm it is conve-

nient to think of the coordinates as forming a stencil with a central point being the initial

coordinate for the current minimization step (c1,n, c2,n, . . . , cp,n). Using the central point as

the initial point in coordinate addressing is not recommended since it will be inefficient when
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programming. Instead the (c1,n + L1∆c1,n, c2,n + L1∆c2,n, . . . , cp,n + L1∆cp,n) (L1 = −1) co-

ordinate should be addressed as the 1st point. Then the central point will be the 5th point

if numbering from left to right followed by top to bottom in two dimensions (two unknowns)

for example.

Central to building an efficient algorithm is developing a process for determining the

vector M. In practice the vector M does not need to be determined explicitly. Instead the

new points may be updated using the addressing described above. Then by pre-assigning

L1, L2 and L3 values to the addresses in the stencil it is possible to build a fast algorithm

without the need to explicitly determine the vector M. Referring back to the two dimensional

example if the address one is the minimum for the current step then this would correspond

to Lβ1 = Lβ2 = −1 or the upper left corner of the stencil.

The details above provide a formal mathematical statement for implementing the pattern

search algorithm. In practice the implementation is rather straightforward and intuitive as

we discuss in the following sections using pendant drop analysis and estimates for surfactant

transport parameters as examples.

2.3 Pendant drops

2.3.1 Image analysis and fitting procedure

The first step in ADSA is accurately defining the experimental drop surface. This step

alone has warranted a detailed analysis from other researchers (54). For this manuscript

we use a pixel threshold analysis (55) to define pixels occupied by the continuous or drop

phases. Then, beginning with the top left edge of the drop where it meets the needle, the drop

surface is traced using the following algorithm. Consider the schematic of the drop surface

shown in Fig. 2.1(a) following the application of the pixel threshold where dark squares are

pixels occupied by the drop, gray squares are occupied by the continuous phase and squares

outlined in white represent the drop surface. The pixel ’X’ is known to be on the surface. Its
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drop 

continuous 

phase X 

𝜖 

a) b) 

Figure 2.1 in (a) a visual representation of the tracing algorithm is shown. In this
schematic the algorithm begins at ’X’ and continues in the path indicated by
the arrows. In (b) a visual representation of the method used to determine
ε and subsequently ψ(b, γ) is shown where squares represent coordinates of
I = (xi, zi) and circles represent coordinates of Y L = (xj, zj).

eight neighboring pixels are considered in counterclockwise order beginning with the pixel

to the right. Once a dark (drop-containing) pixel is found that pixel is saved as another

point on the surface. Next at the newly discovered surface point, its eight neighboring pixels

are now checked in counterclockwise order. A crucial rule in this algorithm is the first pixel

that is checked of the eight neighboring pixels is the last non-surface pixel checked from the

previous set of eight. The arrows in Fig. 2.1 show which pixels are checked and in what

order as the surface is defined. This algorithm continues until the right edge of the needle

tip is reached.

The tracing step results in a set of interface coordinates, denoted I = (xi, zi). Next the

experimental drop shape is compared to a drop shape prescribed by the Young-Laplace equa-

tion, γnκ = ∆ρgz − 2γ
bn

, where κ is the surface curvature, γn is the unknown surface tension
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and bn is the unknown radius at the drop apex. Rearranging and non-dimensionalizing the

Young-Laplace equation using the unknown bn as the length scale yields κ∗ = Bo∗z∗ − 2

where Bo∗ = ∆ρgb2
n/γn is the Bond number. The superscript ’∗’ indicates dimensionless

quantities. In order to determine a drop’s shape from this equation it is parameterized with

respect to arc length s, yielding

dθ

ds∗
= 2−Bo∗z∗ − sin θ

x∗
(2.4)

dx∗

ds∗
= cos θ (2.5)

dz∗

ds∗
= sin θ (2.6)

where θ is the angle between the surface tangent and the axis of symmetry. For a derivation

of this set of differential equations readers should refer to (16; 17; 56). An adaptive 4th-order

explicit Runge-Kutta-Merson scheme is used to numerically integrate these equations for a

given Bo∗ with appropriate initial conditions. The solution is initialized at θ → 0 where

z
′ → 0 (primes indicate derivatives with respect to s) and the Young-Laplace equation can

be approximated by the ordinary differential equation z
′′

+ z
′
/x+ Bo∗z∗ − 2 = 0. This has

the analytical solution

z∗ =
2

Bo∗

[
1− J0

(
x∗
√
Bo∗

)]
(2.7)

where J0 is the zeroth order Bessel function of the first kind (17; 45). The drop shape given

by eqs. 2.4-2.6 is denoted Y L = (xj, zj).

Solutions of the Young-Laplace equation presented above are symmetric about the apex,

so I is split into two halves about the vertical axis of symmetry. The horizontal location of the

axis of symmetry xs is measured to be the average of the leftmost and rightmost horizontal
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coordinates of I. The resulting left and right halves are IL = (x`, z`) and IR = (xr, zr) which

contain L and R coordinate points, respectively. The maximum horizontal distance between

the axis of symmetry and the drop surface is denoted bx and is the initial guess for the radius

of curvature at the drop apex, b0.

For every point on the interface the minimum Euclidian distance between the exper-

imental and Young-Laplace drop shapes is needed. This is defined by the minimum of

di =
√

(xi − xj)2 + (zi − zj)2 where (xj, zj) are coordinates of Y L and (xi, zi) are coordi-

nates of IR or IL. This distance is denoted ε and is shown schematically in Fig. 2.1(b).

The sum of all ε normalized by L or R for IL or IR, respectively, gives the objective func-

tions ψL(bn, γn) or ψR(bn, γn) for a particular guess of γn and bn. There are p = 2 unknown

parameters, (c1,n, c2,n) = (bn, γn), for the pattern search method applied to pendant drops.

Therefore, the set A from eq. 2.2 will contain 3p points producing a nine-point stencil of

values.

As stated above the initial guess for bn is bx. To determine an initial γn an initial guess

of Bo∗ ≈ 0.2 is made such that γ0 = 5∆ρgb2
x. Depending on the surfactant system, γn can

take values from approximately O(10) to O(0.0001) mN m−1. For this reason a log scale is

used for the stencil in the γ-direction in the form γn10L∆γ∗ with ∆γ∗n = 0.05 initially and

L = [−1, 0, 1]. For the bn-direction the stencil is scaled linearly like bn + L∆bn with ∆bn

being 10 µm initially, and φ is fixed to φ = 0.1. The pattern search algorithm continues until

(γn10∆γ∗n − γn)/γn < 10−4 and ∆bn/bn < 10−4. To prevent settling on a false minimum, the

algorithm is restarted using the previously converged bn and γn as the initial guess. If the bn

and γn from successive runs of the pattern search algorithm are sufficiently close then those

bn and γn are taken as the solution.

This process is carried out to fit Y L to both IL and IR, giving two estimates for surface

tension, γL and γR, for the drop. The average of the values for the two halves then gives γ

for the drop at that instant in time. Typically pendant drop algorithms include the tilt of

the drop α due to a potentially unlevel camera as an unknown, but this has been neglected



www.manaraa.com

25

γ
  [

m
N

 m
−

1
] 

α  [deg] 

α = 0∘ 

x 

z 

α = 2∘ 

x 

z 

α = 5∘ 

x 

z 

Figure 2.2 the effect of drop tilt on γ is shown for the experimental trace I of a 7.75 µl
drop of water suspended in air. The trace is rotated ± 10◦. Three examples
of I (black) with the best fits YLR (solid gray) and YLL (dotted gray) are
shown for 0◦, 2◦ and 5◦.
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here. Consider Fig. 2.2 where the experimental trace I of the pendant drop in Fig. 2.4(a)

has been rotated α = ±10◦. Values for γR and γL deviate significantly as |α| > 0◦, but

the mean γ over −2◦ ≤ α ≤ 2◦ is 72.13 mN m−1 with a standard deviation of 0.09 mN

m−1 or 0.12% of the mean. Over −1◦ ≤ α ≤ 1◦ the mean γ becomes 72.12 mN m−1 with

a standard deviation of 0.06 mN m−1 or 0.08% of the mean. Beyond |α| > 2◦ errors in γ

become significant. However tilts between 1 and 2◦ and larger are noticeable with the naked

eye as demonstrated in the example fits on the right side of Fig. 2.2. Tilts this large were

therefore corrected prior to image capture, leaving α small enough that any potential errors

due to neglecting image tilt would be around 0.1% or less. Finally, in the case of fitting

successive images the initial guesses b0 and γ0 for the next image are taken as the solution

of the previously fit image.

2.3.2 Experiments

An in-house setup was created to image pendant drops and bubbles for analysis similar to

many common tensiometers. A vertically oriented syringe pump (New Era Pump Systems)

drove the plunger of a 100 µl Hamilton Gastight syringe. The syringe needle was a 22 gauge

stainless steel type 3 needle (Hamilton) for pendant drops and either a 22 or 16 gauge hooked

”J-needle” (Ramé-Hart) for pendant bubbles. A clear 25×25×50 mm acrylic box was used

to contain the continuous phase. A CCD camera (PixeLINK) captured images of the drop or

bubble with a resolution of 1200×1600 pixels. The aspect ratio of the images was calibrated

by orienting a standard 22 gauge syringe needle both vertically and horizontally, checking for

differences in observed needle thickness of which none was found. A 15 W vertical fluorescent

lamp was situated on the side of the drop or bubble opposite the camera. This provided

excellent contrast between the drop or bubble phase and the continuous phase.

The surfactants used in pendant drop experiments were either > 99% sodium dodecyl

sulfate (SDS) (Fisher Scientific) or > 97% sodium oleate (SO) (TCI). Both surfactants were

used as received. SDS concentrations ranged between 0.1 to 5.0 mM and SO concentrations
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ranged between 0.04 to 2.0 mM. The continuous phases were either air, light mineral oil

(Fisher Scientific, ρd = 830 kg m−3) or reverse osmosis water at 23 ◦C. Drop volumes ranged

from 1 to 30 µl so that the drops were both not too spherical and remained attached to the

needle. Pendant drops were formed at a rate of 80 µl min−1. Experiments with surfactant

typically lasted between 5 and 30 minutes. Images were taken of the drops over time at

intervals of 2 to 30 s per frame and were processed in MATLAB as described in the previous

section.

2.3.3 Results: pendant drops

Figure 2.3 shows example contour plots of ψR(b, γ) and the subsequent path generated

by minimizing the objective function using the pattern search algorithm for the drop’s right

halves (IR). Four pendant drop/bubble systems are considered: two drops of water with

different volumes suspended in air, an air bubble in water, and a water drop with 5.6 mM

SO suspended in corn oil (Crisco) for 10 minutes. The contour plots of the objective functions

were generated by solving eqs. 2.4-2.6 for the range of b and γ shown. In each subplot the

′∗′ indicates the initial guess using γ0 = 5∆ρgb2
x with the black circles being the successive

guesses by the pattern search algorithm. The ′X ′ indicates another run of the algorithm

with an initial guess of 10 mN m−1 and the black triangles are its successive guesses. The

red ′+′ indicates the best fit. With the exception of Fig. 2.3(d) the axes of each figure are

scaled identically. In the top left of each plot in Fig. 2.3 the best fit surface tension is shown

along with the number of points R in IR. The computation time taken by the pattern search

algorithm with the initial guess of γ0 = 5∆ρgb2
x using a computer with a 3.60 GHz Intel

CPU is also shown.

Figure 2.4 shows raw experimental images with best fits of eqs. 2.4-2.6 in white corre-

sponding to the contour plots in Fig. 2.3. The volume and Bo∗ for each drop is shown. The

values for γR and γL for the drop in Fig. 2.3(a) are 72.39 and 72.01 mN m−1, respectively,

resulting in γ = 72.20 mN m−1 which agrees well with values in the literature (57).
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𝛾 = 72.39 𝑚𝑁 𝑚−1  

𝑁 = 701  

𝑡𝑐𝑎𝑙𝑐 = 0.95 𝑠  

𝛾 = 71.86 𝑚𝑁 𝑚−1  

𝑁 = 652  

𝑡𝑐𝑎𝑙𝑐 = 1.20 𝑠  

𝛾 = 72.91 𝑚𝑁 𝑚−1  

𝑁 = 1033  
𝑡𝑐𝑎𝑙𝑐 = 1.54 𝑠  

𝛾 = 0.54 𝑚𝑁 𝑚−1  

𝑁 = 520  

𝑡𝑐𝑎𝑙𝑐 = 1.11 𝑠  

Figure 2.3 example contour plots of ψ(b, γ) are shown for (a) a 7.75 µl water drop in
air, (b) a 3.5 µl water drop in air, (c) a 3 µl air bubble in water, and (d)
a 0.9 µl 5.6 mM SO drop in corn oil after 10 minutes. The ’*’ indicates
the initial guess using γ = 5∆ρgb2

x and the ’X’ indicates another run of
the algorithm starting at γ =10 mN m−1. The red ’+’ indicates the best fit
while the black circles and triangles indicate successive guesses made by the
pattern search algorithm. The resulting surface tension values are annotated
in the top left of each plot.
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a) b) 

c) d) 

𝐵𝑜∗ = 0.100 𝐵𝑜∗ = 0.375 

𝐵𝑜∗ = 0.178 𝐵𝑜∗ = 0.113 𝑉 = 7.75 𝜇l 𝑉 = 3.5 𝜇l 

𝑉 = 3.0 𝜇l 𝑉 = 0.9 𝜇l 

Figure 2.4 pendant drops or bubbles corresponding to the contour plots of ψ(b, γ) in Fig.
2.3 are shown for (a) a 7.75 µl water drop in air, (b) a 3.5 µl water drop
in air, (c) a 3 µl air bubble in water, and (d) a 0.9 µl 5.6 mM SO drop in
corn oil after 10 minutes. The white line is the best fit of eqs. 2.4-2.6. The
Bond numbers are annotated for each drop or bubble.
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2.4 Surfactant transport parameters

2.4.1 Isotherm and equation of state analysis

After determining equilibrium values for the surface tension γeq it is common to further

manipulate that data to estimate surfactant transport parameters for the surfactant-fluid

systems (58; 59). Expressions governing surfactant sorption along and interface are typically

written in terms of the local surface coverage of surfactant Γeq (mol m−2) as a function

of the subsurface concentration Cs (mol m−3). Units for each of the quantities discussed

in this section are provided to help avoid confusion with other studies that utilize similar

notation. The Frumkin isotherm is one of the most commonly used expressions for measuring

or estimating surfactant transport parameters (60). It relates transport properties such as

the bulk surfactant distribution Keq (m3 mol−1), maximum surface coverage Γ∞ (mol m−2)

at or above the critical micellar concentration C∞, and a molecular interaction parameter,

Λ:

Γeq
Γ∞

=
KeqCs

e−ΛΓeq/Γ∞ +KeqCs
. (2.8)

We note that use of the Gibbs adsorption equation, dγeq = −RTΓeqdlnC, with the Frumkin

isotherm yield the familiar equation of state,

γeq = γ0 +mRTΓ∞

[
ln

(
1− Γeq

Γ∞

)
+

1

2
Λ

(
Γeq
Γ∞

)2
]
. (2.9)

Here γ0 is the surface tension for Γeq = 0, R (J mol−1 K−1) is the universal gas constant and

T (K) the temperature. The constant m changes value depending on the surfactant where

non-ionic surfactants have a value of m = 1 while 1:1 ionic surfactants require a value of

m = 2 to account for the species generated by dissociation (61; 62; 63; 64). Using these two

equations it is possible to predict how γeq varies with Cs for given Keq, Γ∞ and Λ. Thus K,
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Γ∞ and Λ can be chosen such that the norm between the resulting γeq versus C curve and

the curve generated from experiments is minimized using a pattern search algorithm.

For Λ = 0 the system reduces to the Langmuir isotherm where convergence is guaranteed.

The Frumkin isotherm with Λ 6= 0 can present several challenges for convergence when using

the pattern search algorithm. First, consider that the isotherm and equation of state are

difficult to manipulate because the system of equations actually has four unknowns, Γeq, Γ∞,

Keq and Λ, with only two equations used to determine them. Here we have generalized the

system of equations by considering Γeq as an unknown since its value depends on Γ∞ and Λ

according to the equation of state. Furthermore, the value of Λ is bounded above by 4 as

discussed in (65). Values Λ > 4 yield isotherms in the Γeq − Cs plane that possess multiple

Γeq values at a given concentration.

Convergence is also directly influenced by the molecular interaction parameter for Λ ≤ 4.

To introduce a convergence criteria for the pattern search method we determine a mathe-

matical relationship between the maximum surface coverage Γ∞ and Λ using the Frumkin

isotherm. The criteria is developed by expanding the exponential term in the denom-

inator of eq. 2.8 for small ΛΓeq/Γ∞ yielding the linearized Frumkin isotherm equation

Γeq/Γ∞ = KeqCs/[1−ΛΓeq/Γ∞+KeqCs] where we have dropped the O(ΛΓeq/Γ∞)2 . . . terms

from the expansion. The maximum surface coverage occurs at or above the critical micellar

concentration so we set Cs = C∞ in the resulting expression. Collecting terms involving Γ∞

we derive the quadratic equation:

Γ∞
Γeq

=
1 +KeqC∞

2KeqC∞
±

√[
1 +KeqC∞

4KeqC∞

]2

− Λ

KeqC∞
(2.10)

for the limit of small ΛΓeq/Γ∞. For Λ = 0 there is a unique non-trivial solution to this

equation, meaning that the Langmuir isotherm will absolutely converge to the correct Γ∞

and Keq. In terms of understanding the influence of Λ 6= 0 on convergence notice that

positive Λ < 4 can produce a discriminant with imaginary values provided Λ > Λcrit where

Λcrit = [1 +KeqC∞]2/[4KeqC∞]. In terms of curve fitting using the pattern search algorithm

this is ideal since only real values would be inputs or outputs i.e. there is a unique real
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solution for Γ∞/Γeq. This would suggest that systems possessing large positive values for

4 > Λ > Λcrit will conditionally converge to the correct values for Γ∞ and subsequently

Keq. But for Λ < Λcrit the discriminant is real suggesting that it is possible to have two

real solutions for Γ∞/Γeq. Therefore, any negative Λ satisfies this condition since Keq > 0

and C∞ > 0. This is a problematic condition for any minimization algorithm because it

suggests two minima exists. Furthermore, if Λ is not close to zero then the expansion of

the exponential term performed above requires higher order polynomials in Γ∞ for better

accuracy. So there is a potential for producing multiple local minima when using the pattern

search algorithm if Λ < 0.

2.4.2 Results: transport parameters

While the convergence of the objective function for the isotherm and equation of state

is conditional the equations themselves are straightforward to manipulate and do not re-

quire integration. For this discussion we will focus on using the unknown parameters

(c1,n, c2,n, c3,n) = (Kn,Γ∞n,Λn) in eq. 2.8 to develop a pattern search algorithm. One only

needs to provide (Keq,0,Γ∞,0,Λ0) for a range of initial bulk concentrations Ci where Cs = Ci

when neglecting depletion. The ability to claim Cs = Ci will be discussed in chapter 3. Then

eq. 2.8 must be iterated to find Γeq for that range of concentrations. For this process we use

a bisect method with tolerance control to iterate the solution until the errors between two

consecutive steps is less than 5×10−16. Once these values are found the Γeq values are input

into eq. 2.9 and the norm can be determined as the difference between the experimental and

numerical values for the surface tension denoted γeq,exp and γeq,num, respectively.

Initial values for the unknowns (c1,0, c2,0, c3,0) = (Keq,0,Γ∞,0,Λ0) are chosen based on

available data for these parameters. The bulk surfactant distribution coefficient Keq,0 is

never negative so we choose values that are initially greater than 1. The ∆Keq is chosen

to be 0.1∆Keq. The molecular interaction parameter Λ0 must be less than 4, and can be

negative. To remove any bias from the initial choice we choose this value as initially zero
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Figure 2.5 Graphs of the objective function in either Λ-Keq, Γ∞-Keq or Λ-Γ∞ plane for
a) aqueous SO in mineral oil (pendant drop), b) SDS in air (69) (du Noüy
ring) and c) aqueous C12E4 in air (pendant drop) (64). The red + shows
the equilibrium value found using the pattern search algorithm.
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Figure 2.6 Graphs of the objective function in either Λ-Keq, Γ∞-Keq or Λ-Γ∞ plane
for aqueous SDS in mineral oil a)-c). The red + shows the equilibrium
value found using the pattern search algorithm with three different initial
conditions a)-c).
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with ∆Λ = 0.1. The maximum surface coverage Γ∞ can have the most salient influence

on the final result because, as mentioned in previous paragraphs, Γeq is also an unknown

and the ratio of these two variables appears in both the isotherm and equation of state.

We choose an initial value of Γ∞,0 = 1 × 10−5. The value for ∆Γ∞ = 0.01Γ∞,0 is seen to

provide fast convergence. Note that the stencil size for this algorithm is 3p where p = 3

or 27. So 27 calculations are required to determine the path to the local minimum if it

exists. Assigning address values begin from left to right, top to bottom, then front to back.

Therefore, the central coordinate, used as the location for the initial and updated point, is

located at address 14.

The algorithm is applied to several sets of data for γ versus Ci to show the range results

when using the pattern search method. The sets include two pendant drops and one pendant

bubble study: aqueous sodium oleate (SO) drops in mineral oil, aqueous sodium dodecyl

sulfate (SDS) drops in mineral oil, and air bubbles in aqueous C12E4 (64). We also include

two historical studies involving aqueous SDS in air (66; 67) where equilibrium surface tension

values are determined by foaming (68) and du Noüy ring (69) methods. The authors of

this paper have produced the data for the two liquid-liquid pendant drop surface tension

measurements.

The objective function for the three dimensional isotherm curve fits are shown in each of

three planes Λ−Keq, Γ∞ −Keq and Λ− Γ∞ in Figs. 2.5 and 2.6 in the vicinity of the local

minimum. Fig. 2.5(a)-(c) shows data for (a) aqueous SO in mineral oil (pendant drop), (b)

aqueous SDS in air (69) (du Noüy ring), and aqueous C12E4 in air (64) (pendant bubble).

The red cross in each plot denotes the location of the minimum determined from the pattern

search algorithm. Each row corresponds to the computation of the objective function for a

given system. In each plot there is a clear local minimum as defined by the closed circles that

surround the red cross in each graph. Fig. 2.6 shows data for the aqueous SDS in mineral

oil (pendant drop) system. The initial conditions (Keq,0,Γ∞,0,Λ0) are varied to produce

the three plots as indicated in the caption. Unlike the previous set of plots these do not
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Figure 2.7 Plots of equilibrium surface tension versus bulk concentration for sodium
oleate (SO) and sodium dodecyl sulfate (SDS). The lines are the best fit
curve generated from the pattern search algorithm.

necessarily yield closed domains in the first and last columns of data. They do appear to

close if the graphs were continued in the positive Λ direction but this is difficult to say with

certainty since the graphs evolve in three-dimensions.

The results of the pattern search minimization procedure are shown in Fig. 2.7 through

plots of γ versus Ci for each system. The bulk surfactant concentrations span 10−4 to 10

mM when including all the data sets. The individual data sets span a much smaller range

of about two orders of magnitude for each system. The C12E4 non-ionic surfactant data

spans the lowest concentration values while the SDS surfactant systems span the largest.

The surface tension values range from a minimum less than 10 mN m−1 for the aqueous SO

in mineral oil to values that are near the clean interface case for water in air 72 mN m−1 and

water in mineral oil 67 mN m−1. For the SDS in mineral oil data the minimization values

for each of the three different initial conditions is plotted on the same figure where the lines

overlap.
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2.5 Discussion

The pattern search method appears to be a robust and efficient means of finding the best

fit of eqs. 2.4-2.6 for a given experimental drop shape. The pattern search algorithm was

capable of fitting pendant drop and bubble halves with surface tensions up to 72.39 mN m−1

and as low as 0.54 mN m−1 using the same initial guess for γ as shown in Fig. 2.3. The drop

and bubble in Fig. 2.4(b) and 2.4(c) have lower Bo∗ and this typically means the pendant

drop method risks returning less accurate results (51). The corresponding contour plots of

ψR in Fig. 2.3(b) and 2.3(c) provide a visual explanation. When compared to the drop in

Fig. 2.4(a), the level curves of ψR become elongated in the γ-direction as you approach the

best fit. Given that the same convergence criteria is used in Fig. 2.3(a)-(c), this means

that a wider range of γ could satisfy those criteria in Fig. 2.3(b) and 2.3(c). This effect

would become magnified as the drop shape approaches a sphere, leading to a wider range

γ potentially satisfying the convergence criteria. Then in order to accurately fit a low Bo∗

drop, one would need a sufficient combination of high image resolution and strict convergence

criteria.

Using γ0 = 5∆ρgb2
x, the four example fits of IR in Fig. 2.3 were determined within 0.95

and 1.54 s for pendant drops and bubbles with widely varying sizes and γ. Further analysis of

the computation time is provided in Fig. 2.10 where transient surface tension measurements

of a 2 mM SO drop in mineral oil are plotted. In Fig. 2.10(a) γ(t) is shown representing

successive fits to experimental pendant drop images taken every 10 s for just over 6 min.

Figure 2.10(b) then shows the time taken to fit both IL and IR for each image, tcalc. For

each image IL and IR had roughly 630 coordinates. The Bo∗ for the first image in Fig.

2.10(a) is 0.073 and at the last image Bo∗ = 0.15. The first image took nearly 4 s to fit, but

subsequent images took roughly half the time since initial guesses for b0 and γ0 were taken

as the solution of the previous time step. The total time taken to fit the 39 images in Fig.

2.10 is 77.3 s or 1.98 s per image. This is significantly faster than the time interval between

successive images. Thus the pattern search algorithm can be used to fit experimental images
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Figure 2.8 A plot of (a) γ(t) for a drop of 2 mM SO in mineral oil is shown along
with (b) the total time taken to fit eqs. 2.4-2.6 to both IL and IR for each
experimental image.

while the images are being captured simultaneously. This would be true for many pendant

drop experiments save for ones requiring very short time intervals between images.

A summary of the estimates for the surfactant transport parameters determined by fitting

the equilibrium surface tension data to the three parameter Frumkin isotherm are presented

in Table 1. The first column show the estimates for Γ∞ where all values are similar and range

from 3.47-4.22 ×10−6. The SDS in air (69) has the lowest value while the non-ionic C12E4

has the largest. The trends are similar for the estimates for the bulk surfactant distribution

coefficient Keq which span some 4 orders of magnitude for the range of data presented.

Perhaps the most interesting results from the estimates of the surfactant transport param-

eters appear in the last two columns which provide information for the molecular interaction
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Table 2.1 Frumkin isotherm model constants.

Γ∞ Keq Λ Λcrit

mol m−2 m3 mol−1 − −
SO - mineral oil (pendant drop) 3.89×10−6 2.16 3.21 1.89
SDS -mineral oil (pendant drop) 3.84×10−6 10.6 -3.88 21.7
C12E4 - air (64) (pendant bubble) 4.22×10−6 2615 -1.07 33.18
SDS - air (68) (foaming) 3.86×10−6 0.214 2.02 1.07
SDS - air (69) (du Noüy ring) 3.47×10−6 0.356 1.45 1.30

parameter. This parameter has been the subject of much debate where it is now generally

understood that there is an upper limit of Λ = 4 above which the isotherm provides multiple

solutions. Here we have proposed another critical Λ based on the C∞ (57) and Keq which

may be initiated using data provided from the Langmuir isotherm. For Λ > Λcrit there is

only one unique solution to Eq. 2.10 used to determine stability. This hypothesis is con-

firmed in the set of data presented in Table 1. Therefore, any negative Λ should be viewed

with suspicion given this criteria. In this regard the equilibrium surface tension data for the

SDS-mineral oil does produce multiple solutions where we have chosen the smallest value

because it provides the smallest Γ∞ (largest ratio of Γeq/Γ∞). The C12E4 also produces a

negative Λ but is a special case because the discriminant in Eq. 2.10 is extremely small such

that it is essentially the same as having one unique non-trivial solution i.e. it is condition-

ally stable. This is somewhat confirmed in the plots shown in Fig. 2.5 where the objective

functions for C12E4 has a very narrow band in both planes containing Λ. So for systems

with large Keq it is possible to find a unique solution through minimization.

2.6 Conclusions

Surface tension measurements were made using axisymmetric drop shape analysis (ADSA)

of a pendant drop with the pattern search method as the minimization algorithm. Here, it

has been successfully used to fit ADSA data to numerical solutions of Young-Laplace equa-
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tion without the need to calculate gradients. This is in contrast to the otherwise nearly

universal use of gradient based minimization methods (16). The non-gradient based Nelder-

Mead simplex method (49) has been used in the context of the pendant drop method by

using the MATLAB function fminsearch (51), but the pattern search method used here has

been mathematically proven to be capable of consistently converging to a local minimum

(52; 53).

After producing equilibrium surface tension data from pendant drops for aqueous sodium

oleate (SO) and sodium dodecyl sulfate (SDS) in mineral oil we fit this data to the Frumkin

isotherm also using the pattern search method. We analyze the convergence criteria for

the equation and extend the upper bound limit for the molecular interaction parameter Λ

using a Taylor series expansion of the Frumkin isotherm equation for small fractional surface

coverage. The curve fits from the pattern search method and stability criteria determined

from linearization of the Frumkin isotherm fit the data fairly well.

Future analysis of the pattern search method for ADSA should include sessile drops. It

may also be possible to apply the method for direct estimates of adsorption/desorption rates

in single and multi-surfactant systems using transient surface tension data.

2.7 Addendum - Drop trace refinement

In section 2.3.1 a simple threshold analysis was used to define pixels in an experimental

image either occupied by the pendant drop or occupied by the continuous phase (55). The

drop surface was then traced, the trace being at the mercy of the image resolution. This

served the purposes of the original publication well, particularly because the image resolu-

tion was high (1200×1600 pixels). However as studied by other authors (54), an estimate

of pendant drop surface coordinates with sub-pixel resolution can be achieved through an

additional fitting process. Since the publication of the original article above, such a process

has been added to the pendant drop surface tension measurement program and is yet another

application of the pattern search algorithm.
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In ref. (54), after making an initial trace of the drop surface, at each original surface

coordinate a sigmoid function was fit to the pixel value profile in the direction normal to

the drop surface. After determining the best fit of the sigmoid function to the pixel value

profile, the surface coordinate was adjusted so that it matched the inflection point of the

function. The result is a refined drop trace with sub-pixel resolution. The authors found that

the additional trace refinement had little effect on well-deformed drops. Where the trace

refinement can be particularly beneficial is for low-resolution images, less-deformed (more

spherical) drops, and observing changes in surface tension for a single drop over small time

steps.

In our edge refinement algorithm we similarly make an initial trace using the threshold

analysis and tracing algorithm described earlier. At each initial surface coordinate a slice of

the pixel value profile is taken. The direction of the slice is not necessarily normal; instead

it is either horizontal, vertical, at 45◦ going up from left to right, or at 45◦ going down from

left to right. The direction of the slice is chosen to best approximate the normal direction at

each point. The number of pixels at either side of the original surface coordinate is chosen as

15, however it should be noted that this may need to be adjusted based on image resolution

and contrast. The result is a profile of pixel values p versus pixel location s. Next a sigmoid

function is defined,

g(s) =
p2 − p1

1 + exp[−B(s− s0)]
+ p1, (2.11)

where p2 is the upper asymptote of the sigmoid, p1 is the lower asymptote, s0 is the location

of the inflection point of the sigmoid, and B dictates the maximum slope of the sigmoid.

In ref. (54) a similar function was used, and all four of the aforementioned constants were

determined using a multivariate fitting procedure. This added another computationally

expensive routine to the overall process, and would not be suitable when fitting many pendant

drop images over time. Instead we assume p2 is the maximum pixel value in the slice and p1
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is the minimum value. We are then left with two unknowns, s0 and B, which we determine

with the efficient pattern search algorithm.

In Fig. 2.7 an example slice of pixel values for a 40 µl aqueous 1 mM SDS drop suspended

in 1000 cSt Si oil is shown. In 2.7(a) the pixel values from the image are the white circles

and the solid black line is the best fit of the sigmoid function. The initial and new surface

coordinates are labeled. Figure 2.7(b) shows the gray scale image of the drop with the

location of the slice shown.

The improvement in the drop trace is shown in Fig. 2.7. In Fig. 2.7(a) the raw image

of the drop is shown and the drop trace is shown in white. A blown up view of the region

indicated in Fig. 2.7(a) is shown in Fig. 2.7(b). Here the original trace is shown as gray

squares and the new trace with sub-pixel resolution is shown as white circles.

Using this drop trace refinement process has several advantages. First it is clear in Fig.

2.7(b) that the refined trace is smoother and more accurate. As a result subtle changes in

the drop shape can be more easily detected. This makes fitting successive images of a single

drop over short time steps a possibility, and it also can make fitting drops that are more

spherical in shape more accurate. Additionally this means lower resolution images can be

used with likely comparable accuracy to higher resolution images that take up considerably

more space on computer hard drives. Finally this trace refinement step could eliminate the

effects of gradients in lighting that may sometimes find themselves in experimental images.

As this is merely an addendum to the originally published article, any additional analysis

of improving the drop trace step will be saved for future work. Future work may include a

detailed analysis on how sub-pixel resolution traces impact transient surface tension mea-

surements using many successive images. This would involve understanding limits in time

steps for observing a measurable change in surface tension, and finding a balance between

the added computation time for the trace refinement step and added accuracy in the surface

tension results.



www.manaraa.com

43

p
ix

el
 v

al
u

e 

𝑠 

slice of pixel values 

a) b) 

Figure 2.9 In (a) a slice of pixel values is shown corresponding to the slice shown in
(b). The solid black line is the best fit of the sigmoid function. The dashed
line is the original guess at the surface coordinate and the dotted line is the
new surface coordinate with sub-pixel resolution.
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a) b) 

Figure 2.10 A 40 µl aqueous drop containing 1 mM SDS is suspended in 1000 cSt Si
oil. In (a) the white line is the drop trace with sub-pixel resolution. In (b)
the original trace (gray squares) is compared to the new sub-pixel resolution
trace (white circles) in the region indicated in (a).
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CHAPTER 3. DETERMINING EQUILIBRIUM

SURFACTANT TRANSPORT PARAMETERS FROM

PARTIALLY DEPLETED PENDANT DROPS

3.1 Introduction

When a surfactant is present in one phase and is insoluble in the other, a commonly used

isotherm and equation of state is the Frumkin model (45; 64; 65) like that used in chapter 2:

θeq =
KeqCeq

KeqCeq + e−Λθeq
, (3.1)

γeq = γ0 + nR̂TΓ∞

[
1

2
Λθ2

eq + ln (1− θeq)
]
. (3.2)

Here θeq = Γeq/Γ∞ is the fractional surface coverage at equilibrium, Γ∞ is the maximum

surface concentration assuming a monolayer with maximum packing, γ0 is the surface tension

for a clean (θeq = 0) surface, Keq is the surface-bulk distribution coefficient, R̂ is the ideal

gas constant, and T is temperature. The interaction parameter Λ accounts for non-ideal

interactions between surfactant molecules where a positive value indicates net attraction

and a negative value indicates net repulsion. The coefficient n is 2 for 1:1 ionic surfactants

and 1 for non-ionic surfactants (63).

In practice eqs. 3.1 and 3.2 are fit to experimental surface tension data, for example using

pendant drop or bubble tensiometry as in chapter 2, to determine Keq, Γ∞ and Λ which

are important in modeling various fluid dynamics problems involving surfaces. Typically
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when fitting to the surface tension data it is assumed that Ceq = Ci. However for certain

surfactants, as the ratio of surface area to surfactant-containing volume becomes larger

or as bulk surfactant concentrations become smaller, it is possible that enough surfactant

will adsorb such that the bulk concentration depletes significantly relative to the initial

concentration Ci (70; 71; 72; 73). In such a case eqs. 3.1 and 3.2 cannot be fit to experimental

data unless Ceq can be determined.

Determining if depletion in the bulk will be significant and to what degree has been

investigated for surfactant transport to fluid-fluid interfaces where surfactant originates in

one phase and is insoluble in the other. A global mass balance combined with the Langmuir

isotherm (eq. 3.1 when Λ = 0) results in two dimensionless parameters (73): a surface-

bulk distribution parameter f ∗ = KeqΓ∞As
V

and a bulk mass loss parameter ζ∗ = Γ∞As
CiV

. The

superscript ’∗’ indicates dimensionless quantities. Here As is the surface area and V is the

volume of the surfactant-containing phase.

The parameter f ∗ is the ratio of the maximum number of molecules of surfactant that can

absorb to the surface, Γ∞As, to what can be interpreted as the potential for a molecule of

surfactant in the bulk to adsorb to the surface at equilibrium, V/Keq. When f ∗ is small there

is a relatively low likely hood that a surfactant molecule will adsorb relative to the number

of adsorption sites available, and when f ∗ is large the number of molecules likely to adsorb

becomes significant relative to the number of adsorption sites. The bulk mass loss parameter

ζ∗ is a ratio of the quantity Γ∞As to the number of molecules of surfactant initially present

in the bulk, CiV . When ζ∗ is small there is a relative abundance of surfactant molecules

in the system compared to the number of adsorption sites, whereas when ζ∗ is large there

are many more adsorption sites than surfactant molecules in the system. In general when

both of these quantities are small depletion in the bulk becomes less likely. In ref. (73)

the authors determined that, for equilibrium conditions, a small f ∗ ∼ O(10−2) will prevent

depletion in the bulk. Above this limit, the combination of increasing f ∗ and ζ∗ will increase

the effects of depletion.
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Researchers have also taken advantage of depletion to make better estimates of surfactant

and protein adsorption at an air-liquid interface by comparing pendant drop and pendant

bubble tensiometry measurements for a given system (70; 71; 72; 74). Their pendant bubble

measurements were unaffected by depletion since the surfactant-containing continuous phase

volumes were large. On the other hand their pendant drops were affected by depletion.

However when γeq is the same for the pendant drop and pendant bubble that means Γeq

must also be the same for both cases according to eq. 3.2. Thus when the surface tensions

were equal the difference in initial bulk concentrations between the drop Ci,D and bubble

Ci,B along with knowledge of the pendant drop volume VD and drop surface area AD was

used to estimate the surface concentration Γeq = AD
VD

(Ci,D − Ci,B).

Situations may arise where pendant drop experiments cannot be designed to neglect the

effects of depletion, for example if limited or expensive materials are under investigation.

However by using a global mass balance along with eqs. 3.1 and 3.2 it will be shown that the

fitting parameters Keq, Γ∞ and Λ can still be determined directly from such experiments.

In this chapter the Frumkin isotherm incorporating a global mass balance will be used with

eq. 3.2 to fit pendant drop tensiometry experiments when depletion cannot be neglected.

Additionally a better understanding of the limits of f ∗ and ζ∗ to produce a significant change

in γeq will be established for different Λ. This predictive analysis will be useful in not only

designing pendant drop experiments but in controlling depletion in any number of interfacial

fluid mechanics problems.

In the next section the Frumkin isotherm incorporating the global mass balance will be

presented followed by an analysis of the limits of ζ∗ and f ∗ to prevent a significant change

in γeq. This will be followed by a description of pendant bubble and drop experiments.

Finally results of the pendant drop and bubble experiments and fits to the modified Frumkin

isotherm will be presented along with some conclusions.
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3.2 Analysis

Consider a surface with area As separating two immiscible fluids. In one phase surfactant

is present which will adsorb to the surface. At equilibrium the number of surfactant molecules

adsorbed to the surface is Γ∞θeqAs and the amount of surfactant molecules remaining in the

bulk volume is CeqV . Using the initial amount of molecules in the bulk volume CiV , a global

mass balance can be established, CiV = CeqV + Γ∞θAs. Inserting eq. (3.1) into this mass

balance yields a quadratic equation in terms of Ceq similar to ref. (73) which has the positive

root

Ceq =
1

2
Ci

1− ζ∗

f ∗
e−Λθ − ζ +

√(
ζ∗

f ∗
e−Λθ + ζ∗ − 1

)2

+ 4
ζ∗

f ∗
e−Λθ

 . (3.3)

This equation predicts the change in bulk concentration given ζ∗, f ∗ and Λ. Since Ceq can

be predicted with eq. 3.3 one can then insert it back into eq 3.1 to yield a modified Frumkin

isotherm which accounts for depletion,

θ =

1
2
KeqCi

[
1− ζ∗

f∗
e−Λθ − ζ +

√(
ζ∗

f∗
e−Λθ + ζ∗ − 1

)2

+ 4 ζ
∗

f∗
e−Λθ

]

e−Λθ + 1
2
KeqCi

[
1− ζ∗

f∗
e−Λθ − ζ +

√(
ζ∗

f∗
e−Λθ + ζ∗ − 1

)2

+ 4 ζ
∗

f∗
e−Λθ

] . (3.4)

This isotherm can be used with eq 3.2. Note that when using eq 3.4 instead of eq 3.1 no

new fitting parameters have been added aside from the geometry As and V which should be

known i.e. the fitting parameters remain Γ∞, Keq and Λ. This modified Frumkin isotherm

can be used to fit γeq versus Ci data using existing methods such as in chapter 2 as long as

As and V are known even if depletion is significant.

Now for a single combination of surfactant and two immiscible fluids, consider one case

where depletion does not occur and one case where depletion does occur. The case with
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depletion will result in a surface tension γeq,2 that is greater than the case without depletion,

γeq,1. We will define the error between the two cases as

χ =
γeq,2 − γeq,1

γeq,1
. (3.5)

Using the Frumkin equation of state this quantity is identical to

χ =

1
2
Λ(θ2

eq,1 − θ2
eq,2) + ln

(
1−θeq,1
1−θeq,2

)
1
2
Λθ2

eq,1 + ln(1− θeq,1)
(3.6)

where θeq,1 and θeq,2 are the equilibrium surface coverages for the cases without and with

depletion, respectively. For a given error in surface tension values χ and surface coverage

without depletion θeq,1, eq. 3.6 can be used to get θeq,2 using standard numerical methods

such as the secant method. Thus the change in surface coverage corresponding to a particular

error in γeq due to depletion can be determined.

Moving on, for a given θeq,1 and Λ < 4 (62) there exists a single quantity KeqCi. Note

that the quantity ζ∗/f ∗ is identical to (KeqCi)
−1. Then for the given θeq,1, Λ and χ, by using

eq. 3.1 to determine KeqCi and eq. 3.6 to determine θeq,2, there is only a single unknown

in eq. 3.4 which is ζ∗. Equation 3.4 can be solved numerically for ζ∗ using the θeq,2 and

KeqCi that correspond to a given θeq,1, Λ and χ. The returned value of ζ∗ is the maximum

allowable ζ∗ to keep the error in surface tension due to depletion less than χ. The result

of the above analysis is the ability to predict when depletion will cause a certain amount of

error in γeq for a given ζ∗, KeqCi and Λ.

3.3 Experimental Section

Surface tension measurements were made using the pendant drop or bubble method, the

theory of which can be found in good detail elsewhere (16; 17). A 100 µl Hamilton Gastight

syringe was used with either a straight 22 gauge stainless steel needle for pendant drops
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or an inverted 14 gauge J-needle (Ramé-Hart) for pendant bubbles. For pendant bubble

measurements a 25×25×50 mm transparent acrylic cell was filled with reverse osmosis filtered

water containing between 0.001 and 0.03 mM > 98.0% tetraethylene glycol monododecyl

ether (C12E4) (Sigma-Aldrich). An air bubble was generated by submerging the J-needle

in the C12E4 solution and displacing 10 µl of air in the syringe using a syringe pump (New

Era Pump Systems). For pendant drop experiments the same acrylic cell was partially

filled with reverse osmosis water below the reach of the needle and the cell was sealed so

that the remaining air in the cell could become nearly saturated with water vapor. The

straight 22 gauge needle was inserted through a small hole in the seal and a pendant drop

of water containing some initial bulk concentration of C12E4 was suspended in the water

vapor-saturated air within the cell. This prevented the drop from evaporating as best as

possible (70). Pendant drop volumes were 2.5 and 6.5 µl.

A CCD camera (PixeLINK) was used to take images of the drop or bubble over time

while a lamp illuminated the drop or bubble from the side opposite of the camera. Intervals

between images were between 5 and 30 s and experiments lasted up to several hours. The in-

house MATLAB program described in chapter 2 was used to extract experimental drop and

bubble shapes from the images and compare them to solutions of the Young-Laplace equation

(16; 17). Best fits of the Young-Laplace equation were determined using the in-house program

incorporating a 2-parameter pattern search algorithm. The resulting equilibrium surface

tension data was fit to the isotherm and equation of state discussed in the next section to

determine the fitting parameters Γ∞, Keq and Λ. Best fits of the isotherm and equation of

state were determined using a 3-parameter pattern search algorithm as was done in chapter

2.

3.4 Results and Discussion

Before looking at the experimental results we can predict if any of the pendant bubble

or pendant drop experiments involving C12E4(aq) will be subject to depletion in the bulk
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Ci 

maximum 𝜁∗ for 𝜒 < 0.05 

a) b) 

Figure 3.1 In (a) the maximum allowable ζ∗ versus KeqCi for different Λ to keep
χ < 0.05 is shown. In (b) the estimated ζ∗ for the pendant bubbles and
drops is shown, and the cut-off line for when depletion will cause χ > 0.05
is shown.
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phase. Using the analysis described above in section 3.2, we can predict the maximum

allowable ζ∗ = Γ∞As
CiV

for different KeqCi to prevent a change χ in γeq relative to a case

without depletion. This is demonstrated in Fig. 3.1(a) where a threshold of χ = 0.05 was

chosen. For a range of Λ values from -4 to +3.9, the solid lines represent the maximum ζ∗

allowed to prevent γeq from changing by more than 5% relative to a case without depletion.

At very low bulk concentrations, depletion can be significant but its effect on surface tension

is not since the θeq = 0 surface tension γ0 is approached here. Therefore it is possible to

get away with relatively large ζ∗ without affecting γeq. Approaching KeqCi = 0.1 differences

begin to emerge depending on the value of Λ. For positive Λ which indicates net attraction

between surfactant molecules, adsorption is enhanced and so depletion becomes a greater

issue. Negative Λ has the opposite effect. Generally speaking, for KeqCi greater than 0.1

the bulk mass loss parameter should be ζ∗ < O(0.1) to keep χ < 0.05.

For the experiments in this analysis, the As
V

ratios are 12.0, 2590 and 3570 m−1 for the

10 µl pendant bubbles in a 25 mm×25 mm×50 mm volume, the 6.5 µl pendant drops and

the 2.5 µl pendant drops, respectively. Note in determining As
V

for the pendant bubble, As

includes the surface area of the bubble as well as the area of the free surface of the acrylic box.

Using the Frumkin equilibrium sorption parameters from ref. (64) (Γ∞ = 4.66 × 10−6 mol

m−2, Keq = 2840 m3 mol−1 and Λ = −1.88), values for ζ∗ can be estimated. In Fig. 3.1(b)

plots of ζ∗ versus KeqCi are shown for each pendant bubble and drop. Also the maximum

allowed ζ∗ to keep χ < 0.05 is shown. This indicates that depletion will not have a significant

impact on the pendant bubble experiments. However the two pendant drop experiments will

clearly be affected by depletion particularly at lower Ci. As the CMC (Ci ≈ 0.03 mM) (57)

is approached we can expect depletion to have less of an impact on γeq, but there likely will

still be differences between the pendant drops and bubble.

Moving on to the experiments, Fig. 3.2 shows γ versus time data for 0.015 mM C12E4

when using a pendant bubble, the 2.5 µl drop and the 6.5 µl drop. In each case an equilibrium

is reached after about 10 min. The 2.5 µl drop shows some small fluctuations which are likely
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Figure 3.2 Plots of γ versus time for 0.015 mM C12E4 are shown for pendant bubbles
( ), 2.5 µl pendant drops (N) and 6.5 µl pendant drops (�).

errors due to the drop being so small and spherical (75). Clearly the equilibrium surface

tension values differ between the bubble and two drop volumes.

In Fig. 3.3 the equilibrium surface tension values for the pendant bubble and two pendant

drops are shown versus initial concentration Ci. Additionally values for pendant bubbles from

ref. (64) are shown to validate our results which are in good agreement. As shown in Fig. 3.2

the equilibrium surface tension values were higher for the pendant drops than the pendant

bubble at Ci = 0.015 mM. This is true at other initial bulk concentrations as shown in Fig.

3.3(a), making it clear that depletion is significant for the pendant drops as predicted. Even

though depletion has significantly affected the γeq values, eq. 3.2 and 3.4 are used to generate

the solid lines of best fit in the figure. The model constants Γ∞, Keq and Λ corresponding

to the best fits are shown in Table 3.1 along with those from ref. (64). The constants for

the three systems studied here and the one from ref. (64) are all in excellent agreement.

In the process of fitting eqs. 3.4 and 3.2 the estimated equilibrium bulk concentration

Ceq is also determined according to eq. 3.3. The equilibrium surface tension values are then
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Figure 3.3 Plots of γeq versus (a) Ci and (b) Ceq are shown for pendant bubbles ( ),
2.5 µl pendant drops (N) and 6.5 µl pendant drops (�). Pendant bubble data
from ref. (64) (#) is also shown in (a). Solid lines in (a) are best fits of
eqs. [3.2] and [3.4] for each filled-marker data set. In (b) the solid line is a
best fit of all data shown.
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Table 3.1 Model constants corresponding to best fits of eqs. (3.2) and (3.4) as shown
in Fig. 3.3. The ’combined fit’ are the model constants from Fig. 3.3(b).

Γ∞ Keq Λ
mol m−2 m3 mol−1 −

pendant bubble 4.40×10−6 2920 -1.88
pendant bubble (64) 4.66×10−6 2840 -1.88
pendant drop - 2.5 µl 4.32×10−6 3390 -2.26
pendant drop - 6.5 µl 4.51×10−6 2720 -1.73

plotted versus the estimated Ceq values in Fig. 3.3(b). All of the data collapse onto a single

curve. The best fit for the pendant bubble case is plotted for visualization purposes. The

ability to collapse all of the data onto a single curve, along with the agreement between equi-

librium surfactant transport parameters, validate the use of the modified Frumkin isotherm

eq. 3.4.

3.5 Conclusions

Three pendant drop/bubble variations were used here to measure γeq for nonionic C12E4:

pendant bubbles where C12E4 was in the continuous phase and Ceq = Ci, 6.5 µl pendant

drops containing C12E4 suspended in air where Ceq 6= Ci and 2.5 µl drops suspended in air

where Ceq 6= Ci. Predictions were made using a global mass balance and Frumkin isotherm

as to whether depletion would significantly affect γeq values. The effect of depletion on γeq

was apparent in Fig. 3.3, yet fits of eqs 3.2 and 3.4 for all three cases yielded model constants

Γ∞, Keq and Λ that were in excellent agreement. Thus it is possible to determine these model

constants even when depletion is observed.

By eliminating the need for Ceq = Ci to determine Γ∞, Keq and Λ, more freedom is given

to designing pendant drop experiments, particularly when dealing with expensive or limited

materials where small volumes would be desired. Additionally the analysis provides a robust

tool for predicting when depletion will be significant and to what degree. This will be helpful
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in designing and characterising many small-scale interfacial fluid dynamics problems such as

in microfluidics devices where drop volumes can be O(102) nl and smaller and As/V ratios

could approach O(104) m−1 and larger.

In the future other adsorption models such as the reorientation model, which has been

shown to be better suited for larger ethylene glycol ethers (74) and some polyethylene glycol

octylphenyl ethers (Triton X’s) (46), could incorporate the same mass balance used here

to account for depletion. Additionally for adsorption-limited transient surface tension ex-

periments, transient adsorption models (64) could incorporate this mass balance to better

predict adsorption and desorption rate constants in the presence of bulk depletion.
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CHAPTER 4. ESTIMATING SURFACTANT SORPTION

KINETICS

4.1 Introduction

In chapters 2 and 3 three parameters describing how equilibrium surface tension values

γeq vary with the initial bulk surfactant concentration Ci were determined. These are: the

maximum surface concentration of surfactant assuming a monolayer, Γ∞; the surface-bulk

distribution coefficient, Keq; and the Frumkin interaction parameter, Λ. These are generally

sufficient in describing surfactant adsorption to stationary fluid surfaces in equilibrium.

Aside from the special case of a stationary surface in equilibrium, additional information

will be required to satisfactorily describe how surfactant accumulates at a surface separating

two immiscible fluids. For example, consider a drop containing surfactant translating in

another liquid. Besides surfactant adsorption to the surface, additional transport processes

such as desorption, surface convection and diffusion, and bulk convection and diffusion can

affect local surface concentrations of surfactant. Correctly modeling such a problem requires

an understanding of both the surfactant adsorption and desorption processes.

Correctly accounting for the adsorption and desorption processes necessitates the deter-

mination of both an adsorption rate coefficient β and a desorption rate coefficient α. Since

transient surface tension values are indicative of surfactant accumulating on the surface over

time, they can be fit to adsorption-desorption models to determine these adsorption and

desorption rates (45; 76; 77; 78; 79). In this chapter an adsorption-desorption model similar

to the one used in the aforementioned references will be used. What will be unique about
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the process outlined here is that the pattern search algorithm will be used to simultaneously

determine the rate coefficients α and β. To do this Γ∞ and Λ from fits of equilibrium surface

tension values will be used.

In this chapter rate constants characterizing surfactant adsorption and desorption will

be determined by examining the transient shapes of pendant drops and bubbles. Here

pendant pendant drop experiments will have surfactant originating inside the drop phase

while being insoluble in the continuous phase. Pendant bubble experiments will inversely

have surfactant in the continuous phase. The experimental systems will be chosen so that

depletion of surfactant in the bulk can be neglected based on the analysis in chapter 3.

Furthermore the relevance of diffusion in the bulk on the surfactant accumulation process

will be determined. The influence of diffusion will be considered by incorporating a finite

volume model of Fick’s 2nd law inside the pendant drop or outside the pendant bubble.

For systems deemed unaffected by diffusion, a concentration dependence on adsorption and

desorption rate constants will be determined. This realized concentration dependence will

be used to develop sorption models to be incorporated in the analysis for fluid dynamics

problems in the following chapters.

In the next section a detailed description of the adsorption-desorption model used will

be presented. This will be followed by a description of the methods used to determine the

importance of bulk diffusion. Then the procedure for fitting the sorption model to transient

surface tension data will be described followed by some results and discussion.

4.2 Analysis

4.2.1 The adsorption-desorption model

A commonly used model for surfactant adsorption and desorption at fluid-fluid interfaces

is the Langmuir model (45),
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∂Γ

∂t
= βCs(1− θ)− αθ, (4.1)

where Cs is the concentration of surfactant just below the surface. If both diffusion and

depletion can be neglected then Cs = Ci. In this chapter we will only consider cases where

depletion can be neglected. This means the bulk mass loss parameter ζ∗ = Γ∞As
CiV

will be

small according to chapter 3. Whether or not diffusion in the bulk can be neglected for

certain surfactant systems will be determined later in this chapter.

In eq. 4.1 the the first term on the right-hand side describes the adsorption processes.

The quantity (1 − θ) represents the number of vacant adsorption sites left on the surface.

The last term describes the desorption processes where θ by itself represents the number of

filled adsorption sites on the surface. The adsorption and desorption rate coefficients β and

α are not necessarily constant. It is common to assume these sorption rate coefficients follow

an Arrhenius rate equation form like (45)

β = Bexp

(
− Eβ
R̂T

)
(4.2)

and

α = Aexp

(
− Eα
R̂T

)
. (4.3)

Above B and A are constants, and Eβ and Eα are activation energies for adsorption and

desorption, respectively. It has been shown that surfactants with long hydrocarbon chains

exhibit non-ideal interactions that have an affect on the activation energies (45). If we

assume the activation energies have a linear dependence on the surface coverage θ then

Eβ = Eβ,0 + νβθ and Eα = Eα,0 + ναθ where νβ and να are constants. Inserting eq. 4.2 and

4.3 with these linear dependencies into eq. 4.1 brings us to our generalized sorption model
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dΓ

dt
= β0e

−λβθCs(1− θ)− α0e
−λαθθ (4.4)

where the zero-coverage rate constants are β0 = Bexp
(
Eβ,0

R̂T

)
and α0 = Aexp

(
Eα,0

R̂T

)
, and the

non-ideal interaction parameters for adsorption and desorption are λβ =
νβ

R̂T
, λα = να

R̂T
. For a

surface in equilibrium (i.e. dΓ
dt

= 0) eq. 4.4 reduces to the Frumkin isotherm from chapter 2

where Keq = β0/α0 and Λ = λα− λβ. It is typically assumed that the non-ideal interactions

between surfactant molecules only affect the desorption process (36). In this case λβ = 0

and λα = Λ; we will use this assumption in our analysis and throughout this thesis.

4.2.2 Bulk diffusion effects on sorption kinetics

It is possible for diffusion in the bulk to play a significant role in surfactant accumulation

on a surface. To predict whether or not diffusion may be significant we can consider relevant

time scales for diffusion and adsorption. The diffusion time scale is generally the ratio of

the square of the diffusion length scale `D and the diffusion coefficient D, or τD = `2
d/D.

The adsorption or kinetic time scale comes from the analytical solution of eq. 4.4 when

λβ = λα = 0 and is τk = Γ∞[α0(KeqCi + 1)]−1.

For spherical drops with radius b previous authors have analyzed these competing time

scales when surfactant is outside the drop (79; 80). The relevant diffusion length scale for

this situation is (80)

`D,out =

(
3b2Γeq
Ci

+ b3

) 1
3

− b (4.5)

and this length scale is likewise relevant to pendant bubble experiments when surfactant is in

the continuous phase. The competing time scales when surfactant is inside a spherical drop

has also been analyzed, but only for a case where depletion in the bulk will occur (73). In

this situation the relevant length scale for diffusion becomes the radius of the drop b. When
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surfactant is present inside the drop and depletion is not significant, the relevant diffusion

length scale will be less than the radius.

To determine the diffusion length scale when surfactant is inside a spherical drop and

depletion is not significant we follow a similar analysis as used in ref. (80). At equilibrium

the amount of surfactant adsorbed to the surface is 4πb2Γeq. The diffusion length is then

the distance normal to the surface one must travel in order to enclose an equivalent number

of surfactant molecules in the bulk. The amount of surfactant enclosed in this volume is

Ceq
[

4
3
π(b3 − (b− `D))3

]
. Equating the two expressions and solving for `D gives the diffusion

length scale,

`D,in = b−
(
b3 − 3b2Γeq

Ci

) 1
3

. (4.6)

Note Ceq = Ci because depletion is neglected. Using this length scale in estimating the

diffusion time scale, the ratio of the diffusion and kinetic time scales can then help us predict

whether or not diffusion will be significant. When surfactant originates outside the sphere

τD/k =
α0(KeqCi + 1)

DΓ∞

[(
3b2Γeq
Ci

+ b3

) 1
3

− b

]2

, (4.7)

and when surfactant originates inside the sphere

τD/k =
α0(KeqCi + 1)

DΓ∞

[
b−

(
b3 − 3b2Γeq

Ci

) 1
3

]2

. (4.8)

We can expect when τD/k � 1 surfactant accumulation is adsorption-controlled, while when

τd/k � 1 it is diffusion controlled. When τD/k approaches O(1) both adsorption and diffusion

would be important.

In addition to investigating the time scales, the surfactant accumulation process can be

modelled to include diffusion. When adding diffusion to the model it is no longer assumed

that Cs = Ci and instead Cs = f(t). Also the concentration inside the drop or outside the
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bubble will no longer be assumed uniform and will instead be C = f(r, t). Since the fluid

is considered to be at rest mass transfer in the bulk is governed by Fick’s second law of

diffusion,

r2∂C

∂t
= D

∂

∂r

(
r2∂C

∂r

)
. (4.9)

We will make the assumption that the pendant drop or bubble can be approximated as a

spherical drop with radius b. For the pendant bubble when surfactant is outside the sphere,

two boundary conditions and the initial conditions are

Cr→∞ = Ci (4.10)

D

(
∂C

∂r

)
r=b

=
dΓ

dt
. (4.11)

For the pendant drop when surfactant is inside the sphere,

(
∂C

∂r

)
r=0

= 0 (4.12)

D

(
∂C

∂r

)
r=b

= −dΓ

dt
. (4.13)

For both cases, the initial conditions are

Ct=0 = Ci (4.14)

Γt=0 = 0. (4.15)

A finite volume representation is used to solve these equations. For the case of surfactant

being inside the drop, consider the approximately spherical drop to consist of I concentric
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shells with thickness ∆r bounded by ri and ri+1. For the case of surfactant being outside an

approximately spherical bubble, consider instead I concentric shells outside the bubble with

thickness ∆r bounded by ri and ri+1. Multiplying eq. 4.9 by 4πdr and integrating from ri

to ri+1,

ri+1∫
ri

∂C

∂t
4π(r′)2dr′ = D

ri+1∫
ri

∂

∂r′

(
(r′)2∂C

∂r′

)
4πdr′, (4.16)

yields the result

Cn+1
i =

4πD∆t

Vi

[
r2
i+1

(
Cn
i+1 − Cn

i

∆r

)
− r2

i

(
Cn
i − Cn

i−1

∆r

)]
+ Cn

i (4.17)

where Vi = 4
3
π(r3

i+1 − r3
i ) is the volume of the ith spherical shell and n is the time step.

Additionally eq. 4.4 is discretized like

Γn+1 = ∆tβ0C
n
s

(
1− Γn

Γ∞

)
− α0

Γn

Γ∞
e−ΛΓn/Γ∞ + Γn (4.18)

where Cn
s = Cn

I for surfactant inside the drop and Cn
s = Cn

1 for surfactant outside the bubble.

Equation 4.18 is included in the boundary condition eq. 4.13. Essentially this finite volume

model is used to estimate Cs(t) which is simultaneously used in eq. 4.4.

4.2.3 Fitting procedure

The goal is to fit eq. 4.4 to sets of γ versus t for different surfactant systems and

bulk concentrations. The fitting procedure is split into two parts: fitting without diffusion

(Cs = Ci) and fitting with diffusion (Cs = f(t)). For either process, first the equilibrium

fitting parameters Γ∞ and Λ must be known. The surface-bulk distribution coefficient Keq

is not necessary. These parameters are determined by fitting the Frumkin isotherm and

equation of state to sets of γeq versus Ci as in chapter 2.
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Following the determination of Γ∞ and Λ, eq. 4.4 is fit to sets of γ versus t by fixing

Cs = Ci. The two unknowns are β0 and α0, and so a two-dimensional pattern search method

as described in chapter 2 is used. Taking some initial guess for β0,init and α0,init, the pattern

search stencil has initial widths ∆β0 = 0.5β0,init and ∆α0 = 0.5α0,init. The adsorption-

desorption model is solved with a simple forward Euler approximation of the time derivative.

The first surface tension value at experimental time t = 0 is used to initialize the model.

This is done using the Frumkin isotherm and equation of state along with the previously

determined Γ∞ and λ to determine the Γ that produces γ(t = 0). Equation 4.4 is then

solved up to a time just beyond the duration of the experiment. The `2-norm between

the model and the experimental data set is used to define the objective function in the

pattern search algorithm. A local minimum is established when both ∆β0,n = 0.0001β0,n

and ∆α0,n = 0.0001α0,n where n is the current guess in the pattern search algorithm. The

pattern search algorithm is reinitialized at this local minimum and iterates until another

minimum is found. A final global minimum is established when successive local minimums

result in equivalent β0 and α0.

After generating rate constants for each data set assuming Cs = Ci, the data are fit a

second time allowing Cs = f(t). The finite volume scheme outlined in the previous section

is used to estimate Cs(t). For a given time step the solution of the finite volume problem

and the adsorption problem is performed as follows. Based on the current concentration just

near the surface Cn
s , the new amount of surfactant on the surface Γn+1 after the time step

∆t is determined using eq. 4.18. Boundary condition eq. 4.11 or 4.13 is also applied based

on Cn and Γn to determine Cn+1
s . Either boundary condition eq. 4.10 or 4.12 is used to get

Cn+1
I or Cn+1

1 for the cases of surfactant outside or inside the sphere, respectively. Then the

interior concentrations Cn+1
i are determined from eq. 4.17. Based on Γn+1, Γ∞ and Λ, γn+1

is also determined.

The finite volume scheme is initialized with eqs. 4.14 and 4.15 and solved until a surface

tension value equal to the first experimental value is reached. Then the equations are solved
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up until a time just beyond the duration of the experiment. Again the `2-norm between the

model and the experimental data set is used to define the objective function in the pattern

search algorithm.

4.3 Experiments

Pendant drop experiments were used to capture transient surface tension data for several

surfactant systems. Experiments were performed using the same setup from chapter 2 for

pendant drops. The continuous phases for the pendant drop experiments were light min-

eral oil (Fisher Scientific) (ρ =830 kg m−3), heavy mineral oil (Fisher Scientific) (ρ =900

kg m−3), and 1000 cSt polydimethysiloxane oil (Si oil) (Clearco) (ρ =980 kg m−3). The

drop phases of the pendant drop experiments were aqueous solutions of either >99% sodium

dodecyl sulfate (SDS) (Fisher Scientific), >97% sodium oleate (SO) (TCI), or >99% hexade-

cyltrimethylammonium bromide (CTAB) (Acros). The SDS and SO surfactants are anionic

while CTAB is cationic. The surfactant concentrations used were as high as the approxi-

mate critical micelle concentration (CMC) (57) and lower. In addition to the pendant drop

experiments, one pendant bubble system was included for comparison. The setup for these

experiments was the same as in chapter 3. The bubble phase was air (ρ =1.2 kg m−3) and

the continuous phase was an aqueous mixture of >98% tetraethylene glycol monododecyl

ether (C12E4) (Sigma-Aldrich), a non-ionic surfactant.

Images of pendant bubbles and drops were taken over time and their change in shape was

analyzed to determine the change in surface tension over time. The in-house program from

chapters 2 and 3 was used. Intervals between images were between 2 and 600 s depending

on the system under investigation. Drop volumes ranged from 5 to 50 µl again depending on

the system. The images were captured until an approximate equilibrium in surface tension

was reached, resulting in experiments that lasted as short as 5 minutes for SO(aq) - light

mineral oil and as long as 15 hours for CTAB(aq) - heavy mineral oil. The resulting transient

surface tension data was fit using the models described above.
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4.4 Results

Before fitting the adsorption-desorption model to transient surface tension data, the

equilibrium fitting parameters must be determined. For SDS(aq) and SO(aq) in light mineral

oil this has been done already in chapter 2 and the fitting parameters are repeated in Table

4.1 for convenience. For the other surfactant systems used here equilibrium surface tension

values are reported in Fig. 4.1 and fit with the Frumkin isotherm and equation of state using

the same procedure from chapter 2. The clean surface tension values used are 72.2 mN m−1

for C12E4(aq) - air, 55 mN m−1 for SDS(aq) and CTAB(aq) - heavy mineral oil, and 25 mN m−1

for SDS(aq) - 1000 cSt Si oil. The surface tensions near the CMC are as low as 4 mN m−1

for SDS(aq) - 1000 cSt Si oil and as high as 33 mN m−1 for C12E4(aq) - air. In Fig. 4.1 the

solid lines are best fits of the Frumkin isotherm and equation of state. The resulting fitting

parameters Γ∞, Keq and Λ are presented in Table 4.1.

The SDS values for Γ∞ and Keq decrease slightly as the continuous phase changes from

light mineral oil to heavy mineral oil to 1000 cSt Si oil. Since the SDS molecule is not

changing size, this can potentially be interpreted as less room being available on the surface

when moving from mineral oil to Si oil, perhaps due to the increasing size of the molecules

in the continuous phase. Still net repulsive interactions between the SDS molecules are

predicted based on values of Λ for each continuous phase. The fits of SO and CTAB on the

other hand generate positive Λ indicating net attraction between surfactant molecules. The

impact of this on fluid dynamics will be investigated in chapter 5 for SO.

Plots of γ versus t for the different surfactant systems with different bulk concentration

are shown in Figs. 4.2, 4.3 and 4.4. Note that not every experiment is shown for the sake of

clarity. The six systems show a range of surface tension values and times required to reach

γeq. The SDS and SO systems take between 50 and 300 s to reach equilibrium, whereas the

C12E4 experiments take up to 2 hours and CTAB experiments as long as 15 hours.

The solid lines in Figs. 4.2, 4.3 and 4.4 are best fits of eq. 4.4 neglecting diffusion i.e.

Cs = Ci. The adsorption-desorption model fits well visually to the experimental data with
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γeq 

 
[mN m−1] 

Ci  [mM] 

Figure 4.1 Plots of γeq versus Ci for SDS(aq) in heavy mineral oil and 1000 cSt Si oil,
CTAB(aq) in heavy mineral oil and C12E4(aq) in air. The solid lines are best
fits of the Frumkin isotherm and equation of state.

Table 4.1 Model constants corresponding to best fits of the Frumkin isotherm and equa-
tion of state as shown in Fig. 4.1.

Γ∞ Keq Λ
mol m−2 m3 mol−1 −

SDS(aq) - light mineral oil 3.84×10−6 10.6 -3.88
SDS(aq) - heavy mineral oil 2.89×10−6 7.25 -1.48
SDS(aq) - 1000 cSt Si oil 2.06×10−6 1.53 -1.89
SO(aq) - light mineral oil 3.89×10−6 2.16 3.21
C12E4(aq) - air 4.40×10−6 2920 -1.88
CTAB(aq) - heavy mineral oil 1.62×10−6 161 1.47
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a) b) 

Figure 4.2 Plots of γ vs t for a) SDS(aq) and b) SO(aq) pendant drops suspended in light
mineral oil. The surfactant concentrations corresponding to each set of data
is shown. The +

′
s represent individual surface tension values determined

from a single image and the solid black lines are best fits of eq. 4.4 neglecting
diffusion (Cs = Ci).
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Figure 4.3 Plots of γ vs t for a) SDS(aq) drops suspended in heavy mineral oil and b)
SDS(aq) drops suspended in 1000 cSt Si oil. The surfactant concentrations
corresponding to each set of data is shown. The +

′
s represent individual

surface tension values determined from a single image and the solid black
lines are best fits of eq. 4.4 neglecting diffusion (Cs = Ci).
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Figure 4.4 Plots of γ vs t for a) CTAB(aq) drops suspended in heavy mineral oil and
b) air bubbles in C12E4(aq). The surfactant concentrations corresponding to
each set of data is shown. The +

′
s represent individual surface tension

values determined from a single image and the solid black lines are best fits
of eq. 4.4 neglecting diffusion (Cs = Ci).
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Table 4.2 Comparisons between Keq from fits of the Frumkin isotherm and equation of
state to γeq data and the ratio β0/α0 from fits of eq. 4.4 to transient surface
tension data when Cs = Ci. The mean of the ratio β0/α0 for a given system,

mean
(
β0
α0

)
, and the corresponding standard deviation, std

(
β0
α0

)
, is shown.

Keq mean
(
β0
α0

)
std
(
β0
α0

)
m3 mol−1 m3 mol−1 m3 mol−1

SDS(aq) - light mineral oil 10.6 10.40 1.13
SDS(aq) - heavy mineral oil 7.25 7.00 2.49
SDS(aq) - 1000 cSt Si oil 1.53 1.40 0.08
SO(aq) - light mineral oil 2.16 1.87 0.11
C12E4(aq) - air 2920 2860 311
CTAB(aq) - heavy mineral oil 161 153 21.8

the exception of the C12E4(aq) - air data set. The inability to fit eq. 4.4 with Cs = Ci to the

C12E4(aq) - air experiments is likely because diffusion effects are significant with this system

as will be discussed later.

The adsorption rate constants β0 and desorption rate constants α0 used to generate the

fits in Figs. 4.2, 4.3 and 4.4 are plotted versus Ci in Fig. 4.5. For a particular system the

rate constants can span up two orders of magnitude, and overall the rates constants span

several orders of magnitude. Interestingly the rate constants all decrease with increasing Ci

except for C12E4(aq) - air, but again the fits for that particular system are relatively poor.

Since β0 and α0 were determined simultaneously it is important to check the ratio β0/α0.

At equilibrium the adsorption-desorption model reduces to the Frumkin isotherm where

Keq = β0/α0, so this relationship must hold for the values shown in Fig. 4.5. The mean of

the ratio β0/α0 for each system studied, mean
(
β0
α0

)
, as well as the corresponding standard

deviation std
(
β0
α0

)
is presented in Table 4.2. The ratios β0/α0 are in very good agreement

with the surface-bulk distribution parameters Keq determined from fits of equilibrium surface

tension data.
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[𝑚𝑜𝑙 𝑚−2 𝑠−1] 

a) b) 

Figure 4.5 The a) adsorption rate constants β0 and b) desorption rate constants α0

corresponding to the fits of eq. 4.4 shown in Fig. 4.2, 4.3 and 4.4 are
plotted versus Ci. Solid lines are linear best fits on the log-log scale.
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As discussed earlier it is necessary to determine if diffusion is relevant and if the assump-

tion Cs = Ci is valid. We will first use eq. 4.7 or 4.8 to determine the order of magnitude

of τD/k for each system for different Ci. This ratio of diffusion and adsorption time scales

requires several parameters, some of which can be difficult to determine. Values for D are

not known for the systems used here, but a value of 1×10−10 m2 s−1 is chosen as a conser-

vative value based on others reported in the literature (80). Values for Keq and Γ∞ come

from Table 4.1 and values for Γeq come from best fits of the Frumkin equation of state and

isotherm. Estimates for α0 come from Fig. 4.5. The values used for α0 are 1×10−7 mol

m−2 s−1 for each SDS system, 1×10−10 mol m−2 s−1 for the CTAB(aq) - heavy mineral oil

system, and 1×10−9 mol m−2 s−1 for the C12E4(aq) - air system. Based on the volumes of the

pendant drops and bubbles, the radii for equivalent spheres range from about 1 to 2 mm;

for the purposes of estimating the order of magnitude of τD/k a fixed value of b =1.5 mm is

used.

In Fig. 4.6 estimates of τD/k are plotted versus Ci. First it is clearly expected that

C12E4(aq) - air will be affected by diffusion as estimates of τD/k are O(10-100). This prediction

agrees with other studies where similar surfactant systems were used (64; 78; 79). It also

explains the relatively poor fits in Fig. 4.4(b).

Each of the SDS and SO systems have τD/k O(0.1) or less, with the SO(aq) - 1000 cSt Si

oil tauD/k being O(0.001) and lower. In these systems it might be expected that diffusion

plays a less significant role and the assumption Cs = Ci may be valid at least for higher Ci.

The CTAB(aq) - heavy mineral oil system has a τD/k O(0.001-0.01) at higher Ci, but just

below Ci =0.01 mM it approaches O(1). For this surfactant diffusion may become significant

at these lower concentrations.

To better determine if diffusion can be neglected, the pendant drop and bubble systems

are modeled using eq. 4.4 where Cs = f(t). The finite volume method outlined earlier is

used to estimate Cs(t) and D = 1× 10−10 m2 s−1 is used. The same D = 1× 10−10 m2 s−1

used in the analysis of time scales is used in the finite volume model. The adsorption rate
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𝜏𝐷/𝑘 

Ci  [mM] 

Figure 4.6 Estimates of the ratio of diffusion to adsorption time scales τD/k are plotted
versus Ci.

constants determined by including bulk diffusion, β0,diff , are compared to those determined

when Cs = Ci in Fig. 4.7. Similar differences are found for the desorption rates.

Above Ci = 1 mM adding diffusion changes the adsorption rate constants by less than

about 10% for each of the SDS, SO and CTAB systems. Below 1 mM the adsorption rate

constants differ by 20-80% for SDS(aq) - light and heavy mineral oil and SO(aq) - light mineral

oil. The CTAB system does not see much difference when adding diffusion until around 0.01

mM where a difference of about 40% is observed. In general increasing Ci decreases the

effect of adding diffusion to the model.

As mentioned earlier the C12E4(aq) - air system is expected to be impacted by diffusion or

even diffusion-controlled. A single comparison between adsorption rate constants determined

with and without diffusion is shown in Fig. 4.7 at Ci = 0.03 mM which is approximately the

CMC. At this concentration there is already a more than 200% difference in rate constants

when adding diffusion. Fits of lower concentrations were unsuccessful because those systems
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|𝛽0 − 𝛽0,diff|

𝛽0
 

Figure 4.7 The relative difference between adsorption rate constants when Cs = Ci and
when Cs = f(t) are shown versus Ci.

are likely diffusion-controlled. The diffusion time scales are so much larger than the adsorp-

tion time scales that changing β0,diff and α0,diff essentially does not affect how γ changes with

time, making it very difficult to determine β0,diff and α0,diff .

4.5 Discussion

In this chapter adsorption and desorption rate constants characterizing the transient sur-

factant accumulation process was sought. This was done by fitting an adsorption-desorption

model eq. 4.4 along with the Frumkin isotherm and equation of state to transient surface

tension data generated from pendant drops and bubbles. In order for the resulting fitting

parameters β0 and α0 to be acceptable, the concentration of surfactant in the bulk phase

had to remain constant and uniform. This means depletion in the bulk had to be limited

and diffusion in the bulk had to be insignificant relative to the adsorption and desorption
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processes. To prevent depletion, the analysis from chapter 3 was considered. The bulk mass

loss parameters ζ∗ were kept low enough to consider depletion negligible.

To determine if diffusion could be neglected and Cs would remain roughly constant the

competing diffusion and adsorption time scales were analyzed. Additionally a finite volume

method was incorporated into the adsorption-desorption model to estimate Cs(t) and deter-

mine diffusion’s impact on β0 and α0. While exact values for the diffusion coefficient D were

not known, a conservative value based on similar values in the literature was used. Based

on an analysis of the time scales, the C12E4(aq) - air system was expected to be significantly

affected by diffusion, and this was confirmed when comparing fits of eq. 4.4 when diffusion

was incorporated. Thus the β0 and α0 in Fig. 4.5 should not be considered indicative of the

adsorption and desorption rates in the C12E4(aq) - air system.

The CTAB(aq) - heavy mineral oil system was expected to be potentially affected by

diffusion only at lower concentrations based on the ratio of diffusion and adsorption time

scales. This is backed up by a comparison of β0 with and without diffusion. At concentrations

Ci > 0.1 mM diffusion affected β0 by less than 10%. At 0.01 mM the difference increased to

almost 40%. The lower concentrations were not considered because a sufficient number of

transient surface tension data points were not collected to fit eq. 4.4; instead only equilibrium

values are presented for these concentrations in Fig. 4.1. It is also of note that adsorption

and desorption rates were considerably smaller for CTAB(aq) - heavy mineral oil than any of

the other systems studied in this chapter. This would make this surfactant difficult to study

in experimental fluid dynamics problems due to its slow sorption kinetics.

The three SDS(aq) systems and the SO(aq) - light mineral oil system were not expected

to be greatly affected by diffusion based on the analysis of time scales. The effect of adding

diffusion on the determination of β0 for these systems in shown in Fig. 4.7. At concentrations

above 1 mM the differences in β0 with and without diffusion were less than 10% using a

conservative guess for the diffusion coefficient. Decreasing Ci increased this difference which

approached 100% at low 0.1 mM and below. This however is a very conservative analysis
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considering the diffusion coefficient used and likely overestimates the impact of diffusion.

Therefore for the purposes of estimating β0 and α0 we will consider diffusion nearly negligible

down to about 0.1 mM for these systems and Cs = Ci.

Continuing to consider the SDS(aq) systems and the SO(aq) - light mineral oil system, the

rate constants in Fig. 4.5 appear to scale with Ci to some constant power m. Additionally the

power m appears to be similar for both α0 and β0. It is then proposed that the adsorption-

desorption model eq. 4.4 could be modified to

dΓ

dt
= β̂0C

1+m
i (1− θ)− α̂0C

m
i e
−Λθθ (4.19)

where β̂0 and α̂0 are interpreted as the adsorption and desorption rate constants at Ci = 1

mM. Importantly when dΓ/dt → 0 eq. 4.19 still reduces to the Frumkin isotherm, making

this a valid adsorption-desorption model to use with the Frumkin isotherm and equation

of state. This concentration dependence allows us to develop a single model describing

surfactant adsorption for a particular surfactant system. For the three SDS(aq) systems and

the SO(aq) - light mineral oil system, the constants β̂0, α̂0 and m to be used in eq. 4.19

based on the linear fits in Fig. 4.5 are shown in Table 4.3. Due to powers m units are not

explicitly given in the table, but the quantities β̂0C
1+m
i and α̂0C

m
i both have units mol m−2

s−1. These single models describing how adsorption and desorption rates change with Ci,

along with the parameters Γ∞ and Λ taken from previous fits of γeq versus Ci, can be used

in the analysis of interfacial fluid dynamics problems.

4.6 Conclusions

In this chapter adsorption-desorption models for several surfactant systems were deter-

mined. The systems for which models were developed involved surfactant that was soluble

in one phase and insoluble in the other. Depletion in the bulk surfactant concentration

was neglected, and models were only developed for systems where bulk diffusion could be
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Table 4.3 The model constants β̂0, α̂0 and m for the three SDS(aq) systems and the
SO(aq) - light mineral oil system corresponding to eq. 4.19 are shown. Note
these constants do have units, but units are not shown due to the powers m.

β̂0 α̂0 m
SDS(aq) - light mineral oil 4.45×10−8 4.29×10−9 -0.82
SDS(aq) - heavy mineral oil 5.21×10−8 7.70×10−9 -0.77
SDS(aq) - 1000 cSt Si oil 1.53×10−8 1.10×10−8 -1.21
SO(aq) - light mineral oil 1.43×10−7 7.69×10−8 -0.74

neglected. The model constants came from fitting transient surface tension data collected

using the pendant drop or bubble method.

A diffusion length scale for the case of surfactant residing inside a spherical drop was

established and the ratio of diffusion and adsorption time scales was used as a first indication

of the ability to neglect diffusion in the bulk. Transient surface tension data was subsequently

fit while incorporating a finite volume model to account for diffusion. For certain models

rate constants were not significantly affected by the inclusion of diffusion, supporting the

assumption that diffusion is negligible for those cases.

In systems where diffusion was neglected, the rate constants were found to be dependent

on the bulk concentration. The Langmuir-Frumkin adsorption-desorption model was mod-

ified with the new fitting parameter m to reflect this concentration dependence. Using the

modified adsorption-desorption model, a single set of five constants can describe adsorption

for a given surfactant system with a given bulk concentration as long as bulk depletion and

diffusion can be neglected. These five constants are the maximum surface concentration

,Γ∞, the Frumkin interaction parameter ,Λ, the adsorption and desorption rate constants

for Ci = 1 mM, β̂0 and α̂0, and the new exponent, m. These models can be incorporated

into the analyses of fluid dynamics problems involving surfactants.
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CHAPTER 5. MARANGONI STRESS INDUCED FILM

THICKENING AND TAIL-STREAMING OF

SURFACTANT-LADEN DROPS IN A HORIZONTAL

ROTATING CYLINDER

Modified from a paper submitted to Phys. Rev. Fluids

Andrew R. White1, Azeez Odesanya2, Caroline Periera2, Thomas Ward3

Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

5.1 Introduction

In this chapter we study, through experiment and computation, the effect of an anionic

surfactant, either sodium dodecyl sulfate (SDS) or sodium oleate (SO), on the equilibrium

oil film thickness between aqueous drops and a rotating horizontal cylindrical tank wall.

The experimental setup consists of a rotating horizontal tank (81) of radius R half-filled

with light mineral oil. Drop volumes, Vd, were small such that locally the tank wall relative

to the drop interface may be considered nearly flat i.e. [3Vd/(4π)]1/3/R � 1. As the tank

steadily rotates with rate ω a visible thin liquid film forms between the tank wall and the

drop interface which we measure. The range of surfactant concentrations spanned from just

above the minimum concentration where the surface tension is lowered to just below the bulk

critical micellar concentration (CMC) denoted c∞ (mol m−3). For the SO surfactant near the

1Primary researcher and author
2Undergraduate student researcher
3Corresponding author. E-mail: thomasw@iastate.edu
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CMC we observe considerable stretching of the drop that results in tail-streaming indicating

saturation of the local interface with surfactant. However this observation does not occur for

all rotation rates suggesting transport of surfactant to the drops rear is key to understanding

this behavior. To estimate the local surface coverage of surfactant we use the coupled species

conservation and and two-dimensional thin film equations (4; 25; 82; 83; 84; 85; 86) with

surfactant transport (27; 38; 41; 87; 88; 89; 90) and kinetics based on the well known Frumkin

isotherm (60; 61). To confirm the validity of the numerical data we compare those results

with the minimum film thickness, hmin, as a function of the capillary number, Ca∗ (25).

Accurate predictions of surface coverage is vital to understanding the observed surfactant

transport and subsequent physico-chemical phenomena. Therefore in this chapter we stress

the importance of utilizing an appropriate isotherm and associated equation of state for

a given surfactant and range of concentrations. Measurement of equilibrium surfactant

transport and transient kinetic parameters for each surfactant were performed in chapters 2

and 4. Here we demonstrate that measurement of these parameters based on the Frumkin

isotherm (60; 61) is suitable for the study of transport of real surfactants. To date there

have been numerous computational studies on surfactant effects at moving interfaces such

as drops and bubbles (36; 91; 92; 93) and thin films (38; 39; 40; 41). Many of these studies

use either a linearized or Langmuir isotherm and associated equation of state to describe the

relationship between surface concentration, Γ, and surface tension, γ (58; 59). While these

equations may be accurate for surfactant concentrations well below the CMC they clearly

cannot provide meaningful results for all situations. In particular the Langmuir isotherm

and equation of state can yield a false physical result of complete surface coverage as the

bulk surfactant concentration approaches the CMC (92).

The Frumkin isotherm and equation of state remedy these shortcomings through a com-

plete description of surfactant behavior, as measured through surfactant transport param-

eters. These parameters are the surface-bulk distribution coefficient Keq, the maximum

surface surfactant concentration assuming a monolayer, Γ∞, and a nonlinear molecular in-
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teraction parameter Λ. The molecular interaction parameter separates the Frumkin isotherm

from the Langmuir isotherm where a positive Λ suggests net attraction between molecules

and a negative Λ indicates net repulsion. Adding more surfactant to the bulk does not

necessarily enhance the surface concentration for negative Λ surfactants. Meanwhile for

surfactants with positive Λ and hence more efficient surface packing it is possible to nearly

reach complete surface coverage well before the bulk concentration is at the CMC. These

two types of surfactants are represented in the SDS and SO systems studied here where

different behavior is observed as the bulk concentration approaches the CMC, denoted C∞,

for nearly equivalent Ca∗ when it is based on the clean (Γ = 0) surface tension. This would

suggest that the capillary numbers based on the clean surface tension may not be useful in

characterizing any contrasting behavior observed between the two surfactant systems. So we

use computation to estimate the minimum surface tension (maximum surface concentration)

and update its value.

The experimental system, consisting of a drop in a rotating horizontal cylindrical tank

that is half-filled with oil, is modeled as a bounded two-dimensional stationary interface

parallel to a moving planar wall. Unfortunately, the horizontal tank setup used here does

not allow the study of long drops or bubbles without the need to consider curvature of the

tank. It does however allow the visualization of a stationary drop adjacent to a moving wall.

To compare the experiments and numerical data we introduce a method to model the thin

film region of oil between a finite length drop and the tank wall. The method consists of

performing a partial lubrication analysis of the governing equations.

The lubrication approximation is applied to the momentum equations yielding the typi-

cally parabolic velocity profile. Then, instead of using the approximation to also eliminate

O[(dh/dx)2] terms in the film evolution and species conservation equations most of the terms

are retained. Including these additional terms allows one to impose boundary conditions that

accurately represent those seen in the experiments. The conditions include precise specifi-

cation of the curvature κ = f(dh/dx, d2/dx2) at the leading edge of the drop, removing the
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need to specify the film thickness a priori. At the trailing edge the curvature is constant

with an interface height set equal to the unspecified leading edge value. Along with plots of

film profiles the data presentation includes an interface velocity profile analysis which shows

the production of stagnation points. We classify these stagnation points and relate their

type to some of the experimental observations.

In the next section the thin film and species conservation equations are discussed. This

is followed by a brief overview of the solution method that required solving simultaneously

the transient film evolution and species conservation equations until an equilibrium film and

concentration profile were reached. Details on the numerical methods will be included in

the paper submitted to Phys. Rev. Fluids. The experimental setup, material and procedure

then follow. This section includes some particle image velocimetry measurements made in

the horizontal rotating tank. Pendant drop data was used to estimate the surface coverage

for the SO and SDS where it was determined that they generate complete and partial surface

coverage at the CMC, respectively. The numerical and experimental results for film thickness

and profiles were compared with good agreement between them. The chapter concludes with

a summary and some possible direction for future work.

5.2 Theory and analysis: lubrication approximation

5.2.1 Theory

Consider a horizontal right-cylindrical tank partially filled with a viscous oil. Subscripts

in this chapter for fluid properties such as the density ρi and dynamic viscosity µi are denoted

as dispersed (i = 1) or continuous (i = 2). The cylinder rotates counterclockwise about its

symmetric axis with angular velocity ω and wall velocity U = ωR where R is the tank

radius. An aqueous drop that contains a surfactant with bulk concentration C0, volume Vd,

and volume-equivalent spherical radius b = [3Vd/(4π)]1/3 with b/R � 1 is inserted into the

oil phase. The surfactant surface concentration and surface tension between the two phases
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are denoted Γ and γ. After some time the drop is located at the equilibrium angular position

φ measured counterclockwise from the tank vertcial symmetry plane. The cross section for

the drop local horizontal and vertical coordinate system is denoted xL and yL, respectively.

Due to shear and Marangoni stresses the drop stretches to a measured length Lγ relative

to the measured length of the drop under the same conditions (capillary number) with no

surfactant in the bulk, L0.

Now consider the viscous thin film of fluid separating the fluid-fluid interface from the wall

as a two-dimensional interface. The thin film region begins at the distance x0,exp measured

from the drops leading edge xL = 0 and has the minimum thickness denoted hmin (see

Fig. 5.1). The local thin film coordinate system is denoted using the x and y where x =

xl − x0,exp and y = yL such that y = 0 and y = h(x) are the wall and thin film location,

respectively. Since the viscosity of the thin film is much larger than that of the drop phase

we mathematically treat it as inviscid so that the velocity, v1, and pressure, P1, are both

zero.

In the following analysis the transport of surfactant to the interface is due to sorption

kinetics i.e. the interface transport is sorption controlled, also called the insoluble surfactant

limit (36; 88; 90; 91; 92). This simplifies the problem since mass transport from the bulk may

be neglected. The simplification also means the proposed system is analogous to one with

the surfactant in the continuous thin film phase. The sorption controlled surface transport

assumption is valid when depletion of surfactant from the bulk drop phase is negligible and

discussed in chapter 3 and when diffusion can be neglected as discussed in chapter 4.

5.2.2 Momentum equation

In the stationary frame of reference the wall velocity relative to the equilibrium position

of the drop can be written as U . The sorption (both adsorption and desorption) of surfactant

to the interface can cause gradients in the surface tension. These can result in a Marangoni

stress τγ at the free surface depending on the surfactant properties and flow conditions as
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Figure 5.1 Problem schematic showing the cross section of a horizontal tank half-filled
with a viscous liquid that contains a surfactant laden drop with bulk concen-
tration Co. The rotates with rate ω causing the drop to reach the equilibrium
angle φ. Locally there is a thin film, h(x), shown in the inset that separates
the drop from the tank wall.
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measured by the capillary number Ca∗ = Uµ2/γ0. Here γ0 denotes the surface tension in

the absence of surfactant, also called the clean interface surface tension. Assuming steady

and incompressible fully developed flow in the low Reynolds number (Re∗h = ρ2Uhmin/µ2)

limit it is possible to approximate the horizontal velocity component in the viscous thin film

region as

u2 =
1

2µ2

dP2

dx
(y2 − 2hy) +

τγ
µ2

y + U (5.1)

by performing a standard lubrication analysis (82). To utilize the lubrication approximation

we use the minimum film thickness hmin and capillary length `c =
√
γ/∆ρg as the natural

length scales for the think film regions x and y directions, respectively. Here, g denotes the

gravitational acceleration constant with ∆ρ = ρ1 = ρ2 > 0. Then the geometric and dynamic

requirement for the lubrication approximation are small gradients in the film dh/dx < 1 and

(hmin/`x)Re
∗
h < 1, respectively.

The area flux of fluid through the thin film region inlet and outlet boundaries located

at x = 0 and x = xend, respectively, may be determined by integrating the velocity once

yielding

q = − 1

3µ2

dP2

dx
h3 +

τγ
2µ2

h2 + Uh. (5.2)

The pressure in the thin film P2 and Marangoni shear stress τγ are determined from the

interface stress balance n · σ1 − n · σ2 = −∇sγ + nγκ where σi = −piI + τi is the stress

tensor. Here pi = Pi − ρig(ycosφ − xsinφ) is the modified pressure with the viscous stress

component written τi = µi[∇u + (∇u)T ]. The surface gradient operator ∇s is defined as

∇s = (I − nn) · ∇. The two-dimensional interface normal is

n = (nx, ny) =
1[

1 +
(
dh
dx

)2
]1/2

(
−dh
dx
, 1

)
. (5.3)
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Through an order of magnitude analysis of the terms in the normal component of the interface

stress balance an expression for the static pressure in the film is found,

P2 = −γ∇ · n−∆ρg(h cosφ− x sinφ). (5.4)

The order of magnitude of the terms in the tangential component of the interface stress

balance were also considered and expression for the Marangoni stress is found,

τγ = µ2
∂u

∂y
=

[
1 + 3

(
dh

dx

)2
]
dγ

dx
. (5.5)

Many of the O[(dh/dx)2 � 1] terms were retained in order to derive the above equations so

that we are able to apply boundary conditions for the curvature, κ, at the leading edge of

the thin film region, x = 0. Details on this analysis will be available in the paper submitted

to Phys. Rev. Fluids.

5.2.3 Surfactant equation of state and interface species conservation

In general there is an inverse relationship between surfactant concentration and surface

tension. An equation of state is required to relate these two quantities. Here we used the

non-linear equation of state

γ = γ0 + nR̂TΓ∞

[
ln (1− θ) +

1

2
Λ (θ)2

]
, (5.6)

where θ = Γ/Γ∞ is the fractional surface coverage as used in previous chapters. The equation

of state was derived from the Frumkin isotherm θeq = [KeqCi]/[e
−Λθeq + KeqCi] that is

used to relate a bulk subsurface concentration, Ci, to an equilibrium surface concentration,

Γeq (60; 61; 62). The parameter n is either 1 or 2 denoting a non-ionic or ionic species,

respectively. Only 2 is used here but we write the full expression for reference. The isotherm

has three unknown parameters Γ∞, Λ and Keq representing the maximum surface coverage,
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molecular interaction parameter and bulk distribution coefficient, respectively. Pendant drop

analysis of equilibrium surface tension data was used to tabulate these values from chapter

2.

To determine the surfactant distribution on the interface we consider the species conser-

vation equation (87),

∇s · (usΓ) + (∇s · n)(n · u)Γ− j = 0 (5.7)

where us = [I −nn] ·u. The flux j of surfactant to the interface is the model developed in

chapter 4,

j = β̂0C
1+m
i (1− θ)− α̂0C

m
i e
−Λθθ. (5.8)

The surface-bulk surfactant distribution coefficient is related to the adsorption and desorp-

tion rate constants at Ci = 1 mM, β̂0 and α̂0, according to the relationship Keq = β̂0/α̂0.

5.2.4 Non-dimensionalization, solution method and boundary conditions

To model the thin film region with Marangoni stresses we solved the depth averaged flux

equation with Eq. 5.2 and the unsteady form of the species conservation equation Eq. 5.7

with the pressure and Marangoni shear stress provided by Eqs. 5.4 and 5.5. The equations

were integrated until equilibriums were reached.

The terms that were included in the depth averaged continuity equation were made

dimensionless using the following parameters:

h∗ =
h

`c
, x∗ =

x

`c
, P ∗ =

`c
γ0

P, q∗ =
µ2

γ0`c
q, t∗ =

γ0

`cµ2

t. (5.9)

These yield the dimensionless flux equation
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q∗ = −1

3

∂P ∗2
∂x∗

h3∗ +
τ ∗γ
2
h2∗ + Cah∗, (5.10)

that was used with the dimensionless depth averaged continuity equation

∂h∗

∂t∗
= −∂q

∗

∂x∗
. (5.11)

As part of the solution procedure the curvature at the leading edge of the thin film region κ∗ =

m2/(1+m2
1)3/2 is fixed. Here m1 = [∂h∗/∂x∗]x∗=0 and m2 = [∂2h∗/∂x∗2]x∗=0. These constants

m1 and m2 are determined using fits of a fourth order polynomial to the experimental drop

profiles. Additional details on the solution procedure for these equations including initial

and boundary conditions are included in the paper submitted to Phys. Rev. Fluids.

The species conservation equation and equation of state were made dimensionless using,

θ =
Γ

Γ∞
, γ∗ =

γ

γ0

(5.12)

with associated dimensionless Frumkin equation of state

γ∗ = 1 + nCa∗Ma∗
[
ln (1− θ) +

1

2
Λθ2

]
. (5.13)

To solve the interface species conservation equation we recast Eq. 5.7 in the unsteady

conservation form

∂θ

∂t∗
= −∇∗s · (u∗sθ)− (∇∗s · n)(n · u∗) + j∗. (5.14)

with the dimensionless interface flux written as

j∗ = Ca∗Bi∗β (1− θ)− Ca∗Bi∗αθe−Λθ. (5.15)
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The problem depends upon the following dimensionless groups,

Ca∗ =
Uµ2

γ0

, Ma∗ =
RTΓ∞
Uµ2

, Bi∗β =
βC0`c
UΓ∞

, Bi∗α =
α`c
UΓ∞

(5.16)

which are the capillary, Marangoni and adsorption/desorption Biot numbers, respectively.

We use the dimensionless groups as operating parameters for comparison between the exper-

imental and computational results. Note that the clean interface surface tension was used

in non-dimensionalization.

5.3 Experiments and results

5.3.1 Setup, procedure and range of parameters

Experiments were performed by using an acrylic cylindrical tank placed on two roller bars

that were driven by a DC motor. The tank had an inner radius of 34.5 mm, length of either

67 or 80 mm, and was closed with circular acrylic pieces at both ends. One circular end of

the tank had two holes on opposite ends of the face that were closed with threaded plugs.

These holes were necessary for filling the tank with oil and inserting the drop containing

surfactant, as well as for emptying and cleaning. The tank was filled halfway with light

mineral oil (Fisher Scientific) (ρ2 = 830 kg m−3, µ2 = 48 mPa s) through one of the access

holes. A 400 µl drop was carefully placed in the tank using a pipette (BioHit) with flexible

plastic tubing attached to the pipette tip. This allowed the drop to be placed gently in the

tank without the risk of causing breakup. The drop contained either > 99% sodium dodecyl-

sulfate (SDS) (Fisher Scientific) or > 97% sodium oleate (SO) (TCI) mixed with deionized

water (ρ1 = 1000 kg m−3, µ1 = 1 Pa s). Surfactants were used as received. Surfactant

concentration ranges were 1 < Ci < 8 mM and 0.5 < Ci < 2 mM for the SDS and SO,

respectively. Transient and equilibrium surface tensions were measured using the pendant

drop method and a pattern search algorithm from chapter 2. A similar pattern search

method was used to estimate the sorption/desorption rates using the transient pendant drop
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Table 5.1 Frumkin isotherm model constants and maximum surface coverage at C∞.

C∞ Γ∞ Λ θeq at C∞ β α
mol m−3 mol m−2 − − m s−1 mol m−2 s−1

SDS -mineral oil 8 3.84×10−6 -3.88 0.75 7.2 × 10−8 6.2 × 10−9

SO - mineral oil 2.2 3.89×10−6 3.21 0.99 1.2 × 10−7 6.2 × 10−8

Table 5.2 Langmuir isotherm model constants and maximum surface coverage at C∞.

C∞ Γ∞ θeq at C∞ β α
mol m−3 mol m−2 − m s−1 mol m−2 s−1

SDS -mineral oil 8 2.51×10−6 0.99 5.1 × 10−8 6.2 × 10−9

SO - mineral oil 2.2 5.26×10−6 0.91 2.9 × 10−7 6.2 × 10−8

data in chapter 4. Curve fits of the equilibrium data were produced using both the three

parameter Frumkin and two parameter Langmuir isotherms and associated equations of

state. A summary of the surfactant transport and kinetic parameters appears in Tables 5.1

(Frumkin) and 5.2 (Langmuir). The adsorption and desorption rate coefficients are given in

the tables where β = β̂0C
1+m
i and α = α̂0C

m
i from chapter 4.

After placing the drop in the tank the access holes were immediately sealed and the tank

was placed on the roller bars. The motor began to rotate the roller bars, and subsequently

the tank, at inner wall velocities between 9 and 70 mm s−1. A CCD camera was oriented

normal to the circular face of the tank without access holes while the drop was illuminated

with a fluorescent lamp from the side. Before images were taken the drop remained in the

rotating tank for a minimum time equal to the time required for the surface tension to reach

equilibrium based on the pendant drop measurements for the surfactant and Ci being used.

Images were then taken of the drop positioned at the equilibrium angle φ where the value

depended on the wall velocity.
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Figure 5.2 Example of streamline visualization using PIV/PTV in the horizontal tank
apparatus. The wall speed is approximately 9 mm s−1. Fluid slip appears in
the vicinity of the interface at approximately 80◦ measured from the bottom.

Following an experiment the images were analyzed in MATLAB to extract the drop

profile and determine the thickness of the film of oil between the drop and tanks wall. The

image resolution was between 20 and 30 µm per pixel width where the cameras pixels were

square. At least five images for a given drop and wall velocity were taken. The acrylic tank

was emptied and rinsed several times with denatured alcohol to remove mineral oil residue

followed by a rise with water. The tank was then dried with compressed air.

It was clear that oil velocities just next to the tank wall would experience slip as the free

surface was approached. To determine if the drops reached an equilibrium φ in this region

a PIV/PTV study was performed in the same range of Reynolds numbers. The tank was

half filled with corn oil (ρ = 925 kg m−3, µ = 55 mPa s). A drop containing 50 mM NaOH

was placed in the tank and a saponification reaction occured at the drop surface, producing

sodium caboxylate surfactants which greatly lower the surface tension. The drop was allowed

to breakup, producing a dispersion of small spherical droplets with radii b < 0.5 mm (94).

The Stokes numbers for these PIV experiment were St∗ � 1 where St∗ = 2
9
ρ1
ρ2

(
b
R

)2
Re∗b with
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Re∗b = Ub/ν2 (95). A planar laser was used to illuminate the middle cross section of the tank

and videos of the tank containing the droplet suspension were recorded for wall velocities of

9.2, 21.2 and 33.2 mm s−1. At higher speeds we were not able to track the individual particles

due to frame rate and resolution limits of the CCD camera. An example of the droplets that

followed the streamlines is shown in Fig. 5.2. The arc length traveled s versus time t was fit

with a linear line indicating a constant velocity even up to an angular position of 80◦ (81).

These velocities closely matched the tank wall velocity for all speeds therefore any effects

from the free surface on the flow around the drops in the experiments were negligible.

Based on these parameters, and others mentioned later in the text, it was possible to

estimate a range of values for the operating parameters. The capillary length for water in

mineral oil was approximately, `c = 6 mm. There are a number of Reynolds numbers based

on different length scales that were used to describe the system. The Reynolds number

based on the tank radius Re∗T = UR/ν2 were in the range 5 < Re∗T < 42. Reynolds numbers

based on the drops length scale b, Re∗b = Ubν2, and thin film, Re∗h, were 0.7 < Re∗b < 5.5

and 0.2 < Re∗h < 1.5, respectively. Reynolds numbers based on the capillary length were

1 < Re∗`c < 7. The corresponding capillary numbers were in the range, 0.005 < Ca∗ < 0.05.

The Marangoni numbers were 1.6 < Ma∗ < 22 for both the SDS and SO surfactants. The

adsorption Biot numbers were 1×10−3 < Bi∗β < 0.1 and 8×10−4 < Bi∗β < 0.05, for the SDS

and SO surfactants, respectively. The desorption Biot numbers were 8.5 × 10−5 < Bi∗α <

1× 10−3 and 8.4× 10−4 < Bi∗α < 0.01, for the SDS and SO surfactants, respectively.

5.3.2 Drop profiles and φ

Fig. 5.3 shows images of drops in the horizontal tank apparatus. The left and right

columns correspond to aqueous SDS and SO systems, respectively, at concentrations listed

below each image. The highest concentrations of 8 mM and 2 mM correspond to experiments

performed at the approximate C∞ value for each surfactant. The capillary number was fixed

at Ca∗ = 0.04 in each experiment. The first two rows of images are for drops that showed
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Ci = 1 mM 

Ci = 4 mM 

Ci = 8 mM 

Ci = 0.5 mM 

Ci = 1 mM 

Ci = 2 mM 

Figure 5.3 Images of aqueous 400 ml drops containing surfactant concentrations as
listed. The capillary number was fixed at Ca∗ = 0.04 in each image shown.
As the surfactant concentration increased there was a noticeable change in
the drop length Lγ. The change was much larger for the SO drops where
tail streaming occurred at the highest surfactant concentration (bottom right
image).
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similar deformation where the drops were elongated for the 1 and 4 mM SDS and the 0.5 and

1 mM SO surfactant concentrations. Above these concentrations the images differ. The 8

mM SDS experiment showed only marginal additional elongation of the drop when compared

to the 4 mM SDS case while the 2 mM SO experiment showed elongation until tail streaming

(96) occurred. When viewed from above the SO drops form an unstable cusped region at

the trailing edge (97) as seen in Fig. 5.4. This is in contrast to the profile of SDS drops as

seen in Fig. 5.5.

In Fig. 5.6 we plot the measured equilibrium angle φ corresponding to the drops central

location relative to the tank wall versus Ca∗. Values for φ were measured for all experiments.

Symbols are used to denote the concentration of surfactant and type as listed in the legend.

The range of equilibrium φ values span from just above 10◦ for Ca∗ ≈ 0.005 to 40◦-50◦ for

Ca∗ ≈ 0.05. The curve for each concentration show similar trends of an increase in φ with

increasing Ca∗. The shape of each curve is also similar with minor differences in φ at the

initial and terminal Ca∗ values shown.

5.3.3 Drop profile analysis and m1, m2 curvature parameters

In Fig. 5.7 we plot examples of the experimentally measured drops’ cross section profile

for two experiments. Fig. 5.7(a) shows the profile for 4 mM SDS and Fig. 5.7(c) for 1 mM

SO, both at Ca∗ = 0.045. The vertical and horizontal axes correspond to the dimensionless

profile height y∗ and length x∗, respectively. The dotted line adjacent to the horizontal axis

is the wall boundary location while the dotted line above denotes the drop profile. The

profiles were measured at a distance normal to the wall using image threshold analysis. The

solid line is the best fit curve (4th order polynomial) to the drop profile extending from the

drops leading edge to just beyond the minimum film thickness. In Fig. 5.7(b) we plot the

first and second derivative, m1 and m2, along with the curvature for the SDS drops. The

dotted line spanning the two images denotes x∗0,exp = 0.6 where the approximate leading edge

of the thin film region begins i.e. κ∗ ≈ d2h∗/dx2∗. These two examples of drop profiles have
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Figure 5.4 A 400 µl drop with Ci = 2 mM SO in the horizontal tank half-filled with
light mineral oil and viewed from above. The capillary numbers are fixed at
Ca∗ =0.03 in each image. The 8 panels are consecutive images taken at 1 s
intervals. They show rather tansient type behavior that accompanies the tail
streaming for this surfactant.
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Figure 5.5 A 400 µl drop with Ci = 8 mM SDS in the horizontal tank appratus half–
filled with light mineral oil and viewed from above. The capillary numbers
are Ca∗ = a) 0.03, b) 0.07, c) 0.11, and d) 0.15. The range of capillary
numbers are larger than the ones discussed elsewhere in the chapter and
demonstrate that tail streaming is possible with the SDS at high capillary
numbers according to panels (c) and (d).
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Ci 

Ci 

Ci 

Ci 

Ci 

Ci 

Ci 

𝜙 

Ca∗ 

Figure 5.6 Plot of drop equilibrium wall angles φ versus Ca∗. Symbols are used to denote
the surfactant concentration as listed in the legend. The symbol-surfactant
concentration relationships shown here are used throughout this chapter.

similar shape with a constant curvature region near the drops leading edge following by a

nearly flat region where the minimum film thickness occurs, then a sharp transition upward

at the trailing edge. The 1 mM SO drop has a slightly larger overall length, Lγ, than the

measured length for the 4 mM SDS profile.

In Fig. 5.8 data for these m1 and m2 values were plotted versus Ca∗. The location

where the thin film region begins was not arbitrary and was fixed at x∗0,exp = 0.6 (see Fig.

5.7(a)-(b) ). The location x∗0,exp = 0.6 was chosen to satisfy the lubrication requirement

that dh∗/dx∗ < 1 which results in κ∗ ≈ d2h∗/dx2∗ (see Fig. 5.7(b)) while providing a

dimensionless domain length of approximately one (A broader discussion of how the profiles

generated from numerical integration of the governing equations change with x∗0,exp and

several other parameters appears later in the text). The solid lines are best fits to each of

the data sets with each line corresponding to a given surfactant concentration. There are

two global trends of a decrease in m1 and an increase in m2 both for an increase in Ca∗.

The range of m1 values are slightly more negative at the highest surfactant concentration
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Ci = 4 mM 

Ci = 1.0 mM 

Figure 5.7 Two examples of dimensionless drop profile height and wall location (dotted
lines) made dimensionless using the capillary length `c = 6 mm. The con-
centrations were a) 4 mM SDS and c) 1 mM SO. The capillary number for
the experiments were Ca∗=0.045 in these two images. The solid line over-
laying the drop profiles denotes the best 4th order polynomial curve fit of the
experimental profile. Panel b) shows the resulting derivatives m1 = dh∗/dx∗

and ms = d2h∗/dx∗ and curvature κ∗ of the 4th order polynomial for (a).
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Ca∗ 

Ca∗ 

Ca∗ 

Ca∗ 

Ci 

Ci 

Ci 

Ci 

Ci 

Ci 

Ci 

Ci 

Figure 5.8 Plots of the first and second derivatives m1 and m2 from the polynomial fits
to the drop profiles for x∗o,exp = 0.6. Solid lines are linear best fits to the data
for each concentration. The dotted line is the Ci = 0 mM case. The slope
and intercept for each curve was used to estimate the curvature boundary
conditions at the leading edge of the drop.
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and capillary number for the SO experiments when compared to the SDS. For the m2 values

they are similar when comparing the two surfactants. There is an intersection in the m2

values for the SDS and SO surfactant that appear at Ca∗ = 0.04 and 0.02, respectively.

5.4 Comparison between theory and experiments

5.4.1 Numerical method

The film evolution equation, eq. 5.11 with appropriate boundary conditions were solved

with the interface species conservation equation, eq. 5.14. The equations were simultane-

ously advanced in time using an explicit Runge-Kutta-Merson algorithm (98) until the film

thickness and surface concentration reached an equilibrium (83). Details on the numerical

solution procedure are included in the paper submitted to Phys. Rev. Fluids.

5.4.2 Computational results

In Fig. 5.9 thin film and surfactant concentration profiles from the integration of the

governing equations were plotted for SO surfactant at Ci = 1 mM with Ca∗ = 0.045. Data is

shown for i. x0,exp = 0.6 and ii. 0.7 both using the Frumkin surfactant model, iii. x0,exp = 0.6

using the Langmuir model i.e. λ = 0, and iv. x0,exp = 0.6 with x∗end = 2. The x0,exp = 0.7

film profile has the largest h∗min of the three cases with x∗end = 1. The x0,exp = 0.6 using the

Langmuir and Frumkin surfactant models have similar h∗min values but the h∗min locations

are not similar where the minimum film thickness appears closer to the drops trailing edge

when using the Frumkin model. Larger computational domains produce the largest values

for h∗min when comparing the x∗end = 2 profile to the others shown. Also it appears that the

profile begin to resemble the classic one predicted by F. P. Bretherton (25).

Results for the surface concentrations are also shown in Fig. 5.9. The Langmuir surfac-

tant model produces the lowest surface concentration shown. This is not surprising since

θ < 1 at C∞ for SO surfactant according to the Langmuir isotherm. So complete equilibrium

surface coverage requires a higher bulk concentration Ci that exceeds C∞ for SO surfactant

when using the transport parameters for the Langmuir isotherm. The same is not true when
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𝜃 

Λ = 0 

Λ = 0 

Figure 5.9 Numerically generated graphs showing the a) thin film h∗ and b) concentra-
tion Γ∗ profiles for SO at 1 mM and Ca∗ = 0.045 with i.) x∗0,exp = 0.6, ii.)
x∗0,exp = 0.7, iii.) x∗0,exp = 0.6 with Λ = 0 (Langmuir), and iv.) x∗0,exp = 0.6
with x∗end = 2.
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using the Frumkin isotherm model where higher equilibrium surface coverage is achieved

even at bulk concentrations half of C∞. Also, notice that the maximum surface concentra-

tions are similar for all of the Frumkin isotherm results independent of x∗end or small changes

in x0,exp.

Fig. 5.10(a)-(c) shows thin film profiles (thick solid lines) from integration of the gov-

erning equations for a) Ci = 0 mM b) SDS at Ci = 8 mM and c) SO at Ci = 2 mM all at

Ca∗ = 0.05. The velocity profiles in the corresponding thin film regions for the stationary-

wall frame of reference are also shown along with corresponding experimental images next

to each plot. When plotting the velocity profiles in the stationary-wall frame of reference it

is possible for two types stagnation points to appear (84). The first type, called attractive,

is a stagnation point where the velocity is positive to the left and negative to the right so

that the velocity vectors point toward the stagnation point. Repulsive stagnation points are

the opposite, so the velocity vectors point away from the stagnation point. Note that the

use here of attractive and repulsive is different from the one used to describe the molecular

interaction parameter in the introduction. Also note that whenever two stagnation points

appear on the interface in the thin film region they cannot be of the same type i.e. two

attractive points cannot reside next to one another and vice versa.

The result Fig. 5.10(a) for Ci = 0 mM shows two stagnation point regions, a repulsive

stagnation point at the leading edge of the thin film region followed by a repulsive one. The

Ci = 8 mM SDS surfactant shows a repulsive stagnant region near the thin film regions

trailing edge. Here the Marangoni stresses drag fluid from the rear into the thin film region.

The same is seen for the Ci = 2 mM SO surfactant except that the repulsive stagnation

point is situated well before the thin films trailing edge. This results in a reversal of the

velocity at the thin films trailing edge for the SO surfactant at this particular concentration

and value for Ca, and the fluid after the repulsive stagnation point locally moves the fastest.

A seen in the experimental image to the right of Fig. 5.10(c) this flow reversal coincides

with experimental observations of tail streaming.
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tail streaming 

Figure 5.10 Three examples of results from numerical integration showing film profiles
(thick solid lines) at Ci = a) 0 mM SDS, b) 8 mM SDS, and c) 2 mM SO
all at Ca∗ =0.05. Also plotted are the thin film velocity profiles in the drops
frame of reference. Attractive and repulsive stagnation points are labeled.
To the right of each plot is an experimental image of a drop corresponding
to the conditions represented in the numerical solutions.
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Ca∗ 

Figure 5.11 Plot of stagnation point location x∗stag versus capillary number. The sym-
bols are used to denote the bulk surfactant concentration, C0, for the cases
where stagnation points appear in the thin film region. Line types are used
to distinguish between attractive (dashed line) and repulsive (solid line)
stagnation points.

In Fig. 5.11 we plot the location of the stagnation points x∗stag determined from the

numerical data versus capillary number. The type of stagnation point is denoted using

a dashed (attractive) or solid (repulsive) line. Symbols are used to denote the surfactant

concentration and type as listed in the legend. The general trends are the appearance of

two stagnation points when no surfactant is present. Both of these stagnation points move

toward the thin film regions leading edge as the capillary number increases. At low SDS

surfactant concentration there is a single attractive stagnation point that appears near the

thin film regions leading edge and moves toward the rear as the capillary number increases.

For intermediate concentrations, Ci = 4 mM SDS and 0.5 mM SO, there are no stagnation

points in the thin film region. At the highest concentrations though a repulsive stagnation

point appears. The location of the repulsive stagnation point is closer to the thin films
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leading edge for the Ci = 2 mM SO surfactant when compared to the Ci = 8 mM SDS

surfactant.

5.4.3 Comparison between experiments/theory and discussion

In Fig. 5.12 we plot both the experimentally measured and numerically determined

dimensionless minimum film thickness, h∗min versus capillary number, Ca∗. The lines with

symbols correspond to the experiments while the solid line with dots − · − are the curves

generated from numerical data. Also plotted for reference is the zero surface tension data. No

errorbars are plotted along with the experimental data since they are uniform and correspond

to the size of a single pixel. The range of values for the minimum film thickness span 5-20%

of the capillary length.

Both sets of data show the expected general trend of an increase in the film thickness with

an increase in the capillary number. This is true across all the experiments and numerical

data sets. Also, the trends are nearly similar in regards to the rate of increase in minimum

film thickness for a given concentration, where an increase in concentration typically results

in a relatively larger rate of increase in the minimum film thickness. This trend though is not

true for all of the numerical SDS data where the Ci = 4 mM curve crosses the Ci = 8 mM

curve near Ca∗ ≈ 0.040. The experimental data though does show a narrowing of the distance

between the two curves for the Ci = 4 and 8 mM data sets over the same region. But at the

highest capillary number, Ca∗ = 0.050 the experimentally measured minimum film thickness

is greatest at 8 mM. It is clear from the data though that the minimum film thickness for

both 4 and 8 mM SDS have a greater rate of increase than the Ci = 0 and 1 mM SDS in

both the measured and calculated data sets. For the SO data the measured and computed

minimum film thickness values show good agreement for most concentrations and capillary

numbers. The few exceptions exist at the moderate capillary numbers 0.020 < Ca∗ < 0.035

where for a brief period of Ca∗ values the film thickness is larger for the Ci = 0.5 mM when

compared to the Ci = 1 mM SO data. This was not reproduced in the numerical data
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Figure 5.12 Comparison between experiments and numerics for the minimum film
thickness hmin versus capillary number Ca∗. The solid and dashed lines
are results of the numerical integration over the same range of capillary,
Marangoni and Biot numbers as measured in the experiments.

curve with much clearer trends of an increase in concentration results in a thicker film for

a given capillary number. The computed film thickness data shown in Fig. 5.12(b) does

reproduce the trends seen in the measured values where there is a greater rate of increase

in the minimum film thickness between the Ci = 1 and 2 mM curves when compared to the

Ci = 0.5 to 1 mM ones.

Given the good agreement between experiments and theory, in terms of measurements

for the minimum film thickness, we now use the numerical data to estimate the maximum

surfactant concentration and subsequently the minimum surface tension. The purpose is

to update the capillary number with the minimum surface tension and use those values
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Figure 5.13 Plot of the normalized drop length Lγ/L0 versus maximum capillary number
Uµ2/γmin based on the minimum surface tension γmin determined from the
integration of the couple thin film and species conservation equations.

to generate plots of the measured drops’ elongation, Lγ versus Ca∗max = Uµ2/γmin. The

results from the analysis are shown in Fig. 5.13, detailing the normalized elongation, Lγ/L0

(here L0 is the Ci = 0 mM drop length) versus the modified capillary number based on the

estimates from the numerical data for the minimum surface tension, Ca∗max. The normalized

elongation spans from just below 0.9 to a maximum of approximately 1.5. The modified

capillary number spans 4 orders of magnitude from just above 0.01 to just below 100. The

data seems to confirm the experimental observations where larger modified capillary numbers

correspond to greater drop elongation. Few of the SDS experiments have elongation greater

than unity while most of the SO values do. The capillary number for this transition appears

to be in the range 0.1 to 1.

Whether or not the flow reversal seen in Fig. 5.10 is responsible for the tail-streaming

observed in the experiments or just a coincidence is difficult to decisively conclude. The main
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reason is the fact that the experiments contain three-dimensional effects (97) that cannot

be accounted for in the two-dimensional simulations. Also, since the computational domain

is fixed in this thin film analysis (x∗end = 1) it is difficult to make a one-to-one comparison.

But the fact that the Frumkin isotherm predicts complete coverage for the SO surfactant

at concentrations below the CMC would at least suggest that the use of the more complex

isotherm has its benefits in understanding surfactant behavior in thin films. Furthermore,

the stagnation point analysis does seem to suggest that at high capillary number, Ca∗, and

bulk surfactant concentration, Ci, it is possible to produce a flow at the drops rear that

would be favorable to tail-streaming.

5.5 Conclusions

In this chapter we presented experiments and computation for the thin film separating

a surfactant-laden drop from the rotating wall of a horizontal cylindrical tank. The experi-

ments were preformed using a horizontal rotating tank that contained light mineral oil. The

drop phase consisted of either aqueous sodium oleate (SO) or sodium dodecyl sulfate (SDS).

Using image analysis we were able to measure the minimum film thickness as a function of

capillary number in the range 0.005< Ca∗ <0.05. The capillary numbers were based on the

clean surface tension. The minimum film thickness for the two surfactants were similar but

the SO surfactant showed greater deformation as measured by stretching of the drops which

eventually led to tail streaming.

The computation was used to compliment the experiments by providing an estimate for

the surfactant concentration and subsequently the surface tension which could be used to

provide a better estimate for the capillary numbers. Here a partial lubrication analysis of

the momentum and species conservation equations were performed. The partial lubrication

analysis allowed us to impose curvature boundary conditions at the drops leading edge.

Values for the derivative used to estimate the curvature at the leading edge were taken from

the experiments. To model the surfactants we used the Frumkin isotherm and equation of
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state. The comparison between experiments and computation were good for the limited

range of capillary numbers.

The two surfactants had almost equal and opposite interaction parameters, Λ, with the

SDS having a negative (net repulsion) value and the SO having a positive (net attraction)

value. This results in the SDS surfactant not reaching complete surface coverage even as

the bulk concentration approaches the critical micellar concentration (CMC). In contrast

the SO surfactant does reach complete coverage as the bulk concentration approaches the

CMC. This behavior allows for lower surface tensions in the SO experiments and provides

an explanation for why the SO drops exhibit tail streaming while the SDS drops do not at

similar Ca∗. This fundamental difference between the SO and SDS surfactants cannot be

captured using the Langmuir equation of state. In fact using the Langmuir equation of state

to fit equilibrium surface tension data the SO was predicted to have a lower surface coverage

than the SDS. The importance of the equation of state here should not be overlooked as

these explanations and theoretical comparisons to experimental behavior could not be made

using a linear or even the Langmuir equation of state.

In the future it will be interesting to apply the horizontal tank apparatus to study defor-

mation of non-Newtonian fluids. The experiments could be performed using a non-Newtonian

continuous and drop phase. In terms of the partial lubrication analysis it would be interest-

ing to see how well it performs in comparisons to axisymmetric geometries such as drops in

tubes.
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CHAPTER 6. THEORY AND EXPERIMENTS ON A
BUOYANCY-DRIVEN SURFACTANT-LADEN DROP

6.1 Introduction

When a drop falls or rises in another viscous fluid due to gravity its terminal velocity

can be significantly affected by the presence of surface tension gradients on the drop surface.

In the absence of temperature gradients these surface tension gradients can develop due

to the non-uniform accumulation of surfactant on the drop surface. This is well known

and the mechanisms by which surfactants affect droplet motion are decently understood.

As surfactant residing in either bulk phase adsorbs to the drop surface, surface convection

carries adsorbed surfactant to the rear of the drop. Generally more surfactant accumulates

in the rear compared to the front and a surface tension gradient develops over the surface.

Surface tension gradients result in a tangential stress called the Marangoni stress which acts

to slow down the surface velocity. The magnitude of the surface tension gradient dictates the

strength of the Marangoni stress, and at its most extreme the surface can be immobilized

i.e. the drop translates like a solid sphere. The surface surfactant concentration profile can

be dictated by the adsorption and desorption rates of the surfactant, bulk diffusion and

convection, and surface diffusion and convection.

Experiments demonstrating the effect of surface tension gradients date as far back at those

by W.N. Bond and D.A. Newton in 1928 (18). While large drops and bubbles translated

like ideal fluid spheres, small drops and bubbles fell like solid spheres due to the increasing

relative effect of Marangoni stress. Theory describing how surface tension gradients affect

drop motion came in the following decades (22; 29; 32; 33; 34; 35; 36; 99; 100). While a
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considerable amount of theoretical work as been done on the problem, there have been fewer

studies directly comparing experiments to the theory.

Recent studies have used settling drop and bubbles experiments to estimate adsorption

behavior. N. Paul et al used settling drop velocities as a method for estimating the adsorp-

tion of sodium dodecyl sulfate and Triton X-100 surfactants on drop surfaces (44). They

determined a relationship between surface coverage and terminal velocity, but the Langmuir

isotherm was used to determine a relationship between bulk concentration and surface cover-

age when it has been shown that better models are available for the surfactants used (45; 46).

They also assumed a uniform surface coverage is sufficient to characterize the distribution

on a translating drop which may not acceptable, and only one drop size was investigated.

In a theoretical and experimental study, R. Palaparthi et al observed air bubbles rising in

glycerol-water mixtures containing hexaethylene glycol monododecyl ether (C12E6), a non-

ionic surfactant (48). They used non-linear adsorption kinetics similar to Chen and Stebe

(36) and found agreement between experimental drag coefficients and numerically predicted

drag coefficients using experimentally determined sorption kinetics. However the viscous

water-glycerol mixtures made measurements of the sorption rate constants difficult because

the increased viscosity made the adsorption process diffusion-limited. Instead a range of

rates constants were found that provided good agreement between experiments and theory.

As a result the authors concluded that settling bubble experiments could be used to estimate

sorption kinetics.

Aside from the results in ref. (48) there is not much literature seeking quantitative

agreement between experiments and theory for the buoyancy-driven surfactant-laden drop

or bubble problem. Additionally in ref. (48) agreement between experimental and theo-

retical drag coefficients was found for only a limited range of bubble sizes and surfactant

concentrations. In this chapter experimentally determined sorption kinetics found in chapter

4 will be used to estimate drag coefficients of settling surfactant-laden drops. The drops will

be aqueous and surfactant will be soluble in the drop phase while assumed insoluble in the
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continuous oil phase. The experimental materials are carefully considered so that depletion

of surfactant inside the drop can be neglected. For two different continuous phases, the ter-

minal velocities of drops with varying surfactant concentrations and radii will be measured.

Both an analytical and numerical approach to the theoretical analysis will be provided, and

the experimentally determined sorption kinetics will be incorporated. For certain cases it

will be shown that the surface diffusion mechanism that is often neglected in this problem

may be required. Both qualitative and some quantitative agreement between experimental

and predicted drag coefficients will be presented.

In the next section the theoretical formulation of the problem will be presented along

with both an analytical and boundary element approach to solving the governing equations.

Reasons for using both approaches will be provided. Afterward the experimental procedure

and materials will be discussed followed by experimental results. This will be followed by

some theoretical results and then a comparison between the experiments and theory. Finally

the a discussion of the results will be followed by some conclusions.

6.2 Theory and analysis

6.2.1 Conservation of momentum and surface stress balance

Consider an aqueous drop with radius b settling under gravity g in an immiscible liquid.

The drop has density and dynamic viscosity ρi and µi and the continuous phase has density

and dynamic viscosity ρo and µo. For this analysis it is assumed that ρi > ρo and µo > µi.

The Reynolds numbers Re∗ = 2ρobU
µo

, where U is the terminal velocity, are small so that

Stokes flow is assumed. This along with the Bond numbers Bo∗ = ∆ρgb2

γmin
being small, where

γmin is the minimum surface tension on the drop surface, lead us to assume the drops remain

spherical.

In the low Re∗ limit the fluid dynamics are governed by the Stokes equation

∇pk = µk∇2uk (6.1)
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where pk = Pk − ρkgh is the modified pressure, and continuity

∇ · uk = 0 (6.2)

where the subscript k is either o or i for the continuous or drop phases, respectively. The

boundary conditions are uo = 0 far from the drop, and at the drop surface ui = uo = us

and

n · σo − n · σi = −∇sγ + γn (∇s · n) (6.3)

where σ = −pkI + τk is the stress tensor, n is the surface normal vector pointing outside

the drop, γ is the surface tension and ∇s = (I−nn) ·∇ is the surface gradient operator. In

the definition of the stress tensor τk = µk[∇uk + (∇uk)T ] is the viscous stress tensor caused

by the fluid velocity uk. On the right-hand side of eq. 6.3 the first term is the Marangoni

stress and the second is the capillary pressure. The capillary pressure always acts normal to

the surface, but the Marangoni stress acts tangentially in the direction of increasing γ. This

means Marangoni stress can impact the drag experienced by the drop.

The drag force experienced by the drop is generally proportional to the surrounding

fluid density, the square of the drop velocity and the cross-sectional area of the drop by

the relationship Fd = C∗d
π
2
ρoU

2b2. The proportionality coefficient C∗d is the dimensionless

drag coefficient. For a ”clean” (i.e. no surfactant) fluid sphere translating with Re∗ �

1 the drag coefficient is C∗d,HR = 8
Re∗

(
2+3ξ
1+ξ

)
(19; 20) where ξ = µi/µo is the viscosity

ratio. The subscript ”HR” stands for ”Hadamard-Rybczynski” in reference to the Hadamard-

Rybczynski solution. When the same clean fluid sphere is translating steadily due to the

buoyant force the drag it experiences is equal to the buoyant force Fb = 4
3
π∆ρgb3. It follows

that the velocity of the clean fluid sphere is UHR = 2
3
(∆ρgb2/µo)(1+ξ)/(2+3ξ). For the case

of ξ → ∞ which corresponds to a solid sphere the drag coefficient reduces to C∗d,St = 24
Re∗

.
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Here the subscript ”St” stands for ”Stokes” in reference to the Stokes drag law for a solid

sphere. Drag coefficients for surfactant-laden drops will fall between C∗d,HR and C∗d,St.

6.2.2 Surfactant equation of state and interface species conservation

Correctly applying eq. 6.3 requires an understanding of the mass transfer problem. The

drop initially contains a uniform concentration of surfactant Ci. The surfactant in the drop

will be distributed inside the drop due to internal convection and diffusion, however this

portion of the mass transfer problem is neglected in this analysis and the concentration just

below the drop surface Cs is assumed to remain nearly uniform i.e. Cs = Ci. At the drop

surface there is a net flux −j of surfactant adsorbing to the surface from the bulk. Frumkin

sorption kinetics (36; 45) with the modification from chapter 4 are used to describe this

process,

− j = β̂0C
m+1
s (1− θ)− α̂0C

m
s e
−Λθθ, (6.4)

where β̂0 and α̂0 are adsorption and desorption rate constants at Ci = 1 mM, Λ is the non-

ideal interaction parameter, θ = Γ/Γ∞ is the fractional surface coverage of surfactant, and

m describes the concentration dependence of the rate constants as discussed in chapter 4. It

is assumed that the bulk mass loss parameters ζ∗ = Γ∞As
CiV

from chapter 3 are small enough

to neglect depletion of surfactant in the drop. Surfactant that adsorbs to the drop surface

will be subject to surface convection and diffusion according to (87)

∇s · (Γus)−Ds∇2
sΓ = −j. (6.5)

In eq. 6.5 on the left-hand side the first term is surface convection where us is the surface

velocity of the drop and the second is surface diffusion where Ds is a surface diffusivity

coefficient. The surface dilation term has been neglected since the drops are assumed to

remain spherical, and the unsteady term has been neglected since we seek the steady state
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solution. On the right hand side is the source term −j which is the net flux of surfactant to

the surface eq. 6.4.

Because eq. 6.3 requires knowledge of surface tension gradients and eqs. 6.4 and 6.5

describe the transport of surfactants, an equation of state relating the two quantities is

required. The choice of Frumkin sorption kinetics requires the Frumkin equation of state

(60),

γ = γ0 + nR̂TΓ∞

[
ln(1− θ) +

1

2
Λθ2

]
, (6.6)

where γ0 is the surface tension when θ = 0, and n is the Gibbs coefficient which is 2 for 1:1

ionic surfactants and 1 for non-ionic surfactants. The use of this equation of state requires

the assumption that at any location the surface is in a local equilibrium.

In eq. 6.3 the Marangoni stress term -∇sγ can be rewritten using the chain rule as - dγ
dΓ
∇sΓ

where the derivative of the equation of state is explicitly displayed. Then the Marangoni

stress can be represented by −∇sγ = nR̂T [(1− θ)−1 − Λθ]∇sΓ. This representation of the

Marangoni stress provides the coupling between the presence of surfactant concentration

gradients and their effect on the shear stress on the surface by way of eq. 6.3, and its form

is particularly important for moderate and large θ. A number of authors, even recently,

have used a linear equation of state to describe interfacial flow problems such as this (32;

34; 35; 101; 102; 103; 104; 105). This leads to a couple issues: first a linear equation of

state greatly overestimates surface tension as surfactant concentrations become moderate

or large, and second the Marangoni stress is greatly underestimated leading to unrealistic

surfactant concentration profiles on the surface. For example in the above representation of

the Marangoni stress the (1 − θ)−1 term goes to infinity as θ → 1, effectively immobilizing

the surface before an overaccumulation of surfactant (θ > 1) can occur. A Marangoni stress

derived from a linear equation of state would not have this quality and could allow for θ > 1
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which would generally be unrealistic excluding monolayer compression or the formation of

other phases on the surface.

Solving the coupled mass transfer and fluid dynamics problem described by eqs. 6.1, 6.3

and 6.5 can be done both analytically similar to refs. (34; 35; 36) or numerically such as

with the boundary element method (106; 107). In this chapter both approaches will be used.

First an analytical solution to eqs. 6.1, 6.3 and 6.5 will be developed similar to ref. (36)

but with the surface diffusion term included. As will be shown in experiments this term can

explain behavior that would otherwise be impossible to describe without surface diffusion.

A description of the analytical approach comes in the next subsection.

The analytical approach becomes mathematically stiff for small Bi∗α, small KeqCi and

large Pe∗s which will be explained in more detail in the next subsection. This situation cor-

responds to the stagnant cap regime where very sharp gradients in surfactant concentration

develop. For these cases a boundary element approach to solving eqs. 6.1, 6.3 and 6.5 will

be used following the methods described in (107). A description of the boundary element

approach comes in the subsection following the next.

6.2.3 Analytical approach

For the analytical approach we will operate in a polar coordinate system like that depicted

in Fig. 6.1 (note θ is the fractional surface coverage while φ is the angular position on the

meridional plane). We will begin by defining appropriate scales for the variables. The

velocity scale is the terminal velocity U , the length scale is the drop radius b, the surfactant

concentration scale is the maximum surfactant concentration for a monolayer Γ∞, and the

stress scale is b
µoU

. The normal component of eq. 6.3 will be neglected since the drop is

assumed to be spherical. What is left is the tangential stress balance,

τ ∗rφ,o − ξτ ∗rφ,i = nMa∗
(

1

1− θ
− Λθ

)
dθ

dφ
, (6.7)

where τ ∗rφ,k is the dimensionless shear stress for the drop phase (k = i) or continuous phase
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Figure 6.1 The coordinate system used in the analytical approach.

(k = o) at the drop surface and Ma∗ = R̂TΓ∞
µoU

is the Marangoni number relating the impor-

tance of Marangoni and viscous stresses. The mass balance eq. 6.5 becomes

1

sinφ

d

dφ
(sinφθu∗s)−

1

Pe∗ssinφ

d

dφ

(
sinφ

dθ

dφ

)
= Bi∗β(1− θ)−Bi∗αe−Λθθ (6.8)

where Bi∗β = bβ̂0C
m+1
s

Γ∞U
and Bi∗α = bα̂0Cms

Γ∞U
are the adsorption and desorption Biot numbers,

and Pe∗s = bU
Ds

is the surface Peclet number. Note that
Bi∗β
Bi∗α

= KeqCi where Keq = β0
α0

is

the surface-bulk distribution coefficient from previous chapters. The time derivative in eq.

6.5 is eliminated in eq. 6.8 because we seek the steady state solution. The Biot numbers

describe the relative importance of surface convection and adsorption or desorption and the

surface Peclet number relates the importance of surface convection and surface diffusion.

The quantities Bi∗β, Bi∗α, Pe∗s and Ma∗ will dictate the surface concentration profile and to

what extent the surface velocity will be slowed.

Equations 6.7 and 6.8 are coupled by u∗s and θ. An appropriate form for u∗s comes from

the analytical solution for a translating fluid sphere (108),
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u∗s = −2
∞∑
n=2

Bn
C−

1
2

n (η)

sinφ
+

1

2
sinφ (6.9)

where C
1
2
n are Gegenbauer polynomials of order n and index −1

2
, Bn are constants to be

determined and η = cosφ. The surface coverage θ is to be represented as a Fourier-Legendre

series, Γ =
∞∑
m=0

AmPm(η) where Am are constants to be determined and Pm are Legendre

polynomials of order m (36).

Taking the expressions for u∗s(φ) and θ(φ) above and inserting into eqs. 6.7 and 6.8 leads

to two coupled infinite series equations. The surface mass balance becomes

∞∑
m=0

Am(m+ 1)

sinφ
[Pm+1(η)− ηPm(η)]

[
1

2
sinφ− 2

∞∑
n=2

Bn
C−

1
2

n (η)

sinφ

]
+ ...

∞∑
m=0

AmPm(η)

[
η − 2

∞∑
n=2

BnPn−1(η)

]
− ...

1

Pe∗ssinφ

[
∞∑
m=0

Am(m+ 1)

sinφ
(Pm+1 − ηPm)(η − 1)

]
+ ...

1

Pe∗ssinφ

[
∞∑
m=0

Am(m+ 1)

(
sinφPm −

m+ 1

sinφ
(ηPm+1 − Pm) +

(m+ 1)η

sinφ
(Pm+1 − ηPm)

)]
= ...

Bi∗β

(
1−

∞∑
m=0

AmPm(η)

)
−Bi∗α

∞∑
m=0

AmPm(η)exp

[
−Λ

∞∑
m=0

AmPm(η)

]
.

(6.10)

For the tangential stress balance, the (1 − θ)−1 term in eq. 6.7 will approach infinity as

θ → 1, making the equation stiff for some situations. Multiplying both sides by (1 − θ)

removes these large values from the right-hand side and makes values on the left-hand side

smaller as θ → 1, relieving this issue. Thus the tangential stress balance becomes
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(
1−

∞∑
m=0

AmPm(η)

)[
−3

2
ξsinφ+ (1 + ξ)

∞∑
n=2

Bn(4n− 2)
C−

1
2

n (η)

sinφ

]
= ...

nMa

[
1−

(
1−

∞∑
m=0

AmPm(η)

)
Λ
∞∑
m=0

AmPm(η)

]
∞∑
m=0

Am(m+ 1)

sinφ
[Pm+1(η)− ηPm(η)] .

(6.11)

The problem now becomes solving for the constants Am and Bn in eqs. 6.10 and 6.11.

If the infinite series are truncated so that we consider M values of Am and N values of Bn,

eqs. 6.10 and 6.11 can be solved numerically with a collocation method (36). With M +N

unknowns and two equations we need to solve eqs. 6.10 and 6.11 at I = 1
2
(M + N) equally

spaced collocation points φi about the drop surface from 0 < φi < π. The resulting system

of equations is solved with a Newton-Raphson solver:

 Am

Bn


new

=

 Am

Bn

− (∂[Gm,n,i, Hm,n,i]

∂[Am, Bn]

)−1

 Gm,n,i

Hm,n,i

 , (6.12)

where G and H represent the residuals of the mass balance and tangential stress balance,

respectively. Residual here is defined by taking all terms in eqs. 6.10 and 6.11 and moving

them to the left-hand side, and calling the right-hand side the residual which will approach

zero while converging to a solution. The Newton-Raphson solver requires derivatives or both

eq. 6.10 and 6.11 with respect to Am and Bn.

In the absence of a previous set of Am and Bn, an initial guess is made by taking Ma∗ → 0

and using a single collocation point at φ1 = 1
2
π. This gives A0 = 0 and B2 = ξ

2(1+ξ)
. Then a

large but finite Ma∗ is chosen, a new collocation point is added where AM = AM−1 and BN =

BN−1, and new Am and Bn are determined with the Newton-Raphson solver. Additional

collocation points are added until three convergence criteria are met. First convergence of

B2 is checked:
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|B2(I)−B2(I − 1)|
B2(I − 1)

< 10−6. (6.13)

If this is satisfied then profiles of u∗s(φ) and θ(φ) are generated for J points φj along the

drop surface. The maximum change in u∗s,j(I) and u∗s,j(I − 1), and in θj(I) and θj(I − 1) is

checked:

max

[ |u∗s,j(I)− u∗s,j(I − 1)|
u∗s,j(I − 1)

]
< 10−6, (6.14)

max

[
|θj(I)− θj(I − 1)|

θj(I − 1)

]
< 10−6. (6.15)

If the above three criteria are met then a solution is reached. With the constants now

determined, the drag force experienced by the drop can be expressed Fd = 4πµobU(1 +B2).

This is compared to the drag experienced by a surfactant-free drop Fd = 2πµobUHR
2+3ξ
1+ξ

.

For both a clean drop and a surfactant-laden drop of equal size, density and viscosity falling

through the same continuous phase, their drag must be equal. Thus equating the two drag

expressions the ratio of velocities can be determined,

U

UHR
=

(
1

1 +B2

)
1 + 3

2
ξ

1 + ξ
. (6.16)

As mentioned earlier this analytical approach will become stiff for small Bi∗α, small KeqCi

and large Pe∗s. This situation corresponds to the stagnant cap regime where sharp gradients

in Γ develop. Because Γ is represented as an infinite series of Legendre polynomials, the

increasingly sharp gradient in Γ requires more terms in the series before being truncated

to satisfactorily represent the surfactant concentration profile. This results in a need for an

increasing number of collocation points and increasingly better initial guesses for Am and Bn.

Because of the matrix inversion in the Newton-Raphson method this causes the analytical
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Figure 6.2 The coordinate system used in the boundary element approach.

approach to become very computationally expensive, and so for cases where Bi∗α and KeqCi

are small and Pe∗s is large a boundary element approach will be used as described in the

next subsection.

6.2.4 Boundary element approach

As stated above the analytical approach becomes mathematically stiff for small Bi∗α

and KeqCi and large Pe∗s. In an alternative approach to solving the coupled mass transfer

and fluid dynamics problem we will use the boundary element method. The coordinate

system used here will be cylindrical-polar as in Fig. 6.2. The x-coordinate is now the

vertical coordinate and the y-coordinate is the perpendicular distance from the drop axis of

symmetry to the drop surface. Applied to Stokes flow, this method considers a singularly

forced flow like

∇p = µ∇2u+ bδ(x− xo) (6.17)
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where b is the arbitrary magnitude of the force applied at the point xo = (yo, xo). The

resulting velocity and stress fields at the point x = (y, x) are

ui(x) =
1

8πµ
Gij(x,xo)bj (6.18)

and

σik(x) =
1

8π
Tijk(x,xo)bj (6.19)

where Gij and Tijk are velocity and stress Green’s functions, respectively (107). The Green’s

functions depend on the flow domain and for a number of special cases the correct forms

can be found in the literature (107). Green’s functions for an axisymmetric body in an

unbounded domain can be found in the appendix.

The boundary element method uses the above singularly forced flow along with the

Lorentz reciprocal relation ∇ · (u(1) · σ(2) − u(2) · σ(1)) = 0 where the flow (1) is the sin-

gularly forced flow and flow (2) is an unrelated Newtonian Stokes flow. After some rear-

ranging (107), the boundary integral equation describing the axisymmetric surfactant-laden

buoyancy-driven drop is

u(xo) = − 1

4πµo(1− ξ)

∫
C

G(x,xo)∆f(x)d`(x) + ...

1− ξ
4π(1 + ξ)

 PV∫
C

[u(x)− u(xo)]T (x,xo)nd`(x)− 4πu(xo)

 (6.20)

where ∆f is the jump in traction across the surface and C is the drop surface. The ”PV”

in the second integral indicates the principal value. The jump in traction comes from eq.

6.3. The integral equation contains two integrals. The first integral on the right-hand side

is commonly called the single layer potential and represents a distribution of point forces



www.manaraa.com

123

associated with the velocity Green’s function distributed about the drop surface. The second

integral is called the double layer potential and represents a distribution of point source and

point force dipoles (107).

In contrast to the analytical approach, the velocity for the boundary element approach

is scaled like u
′
= u µo

∆ρgb2
where the apostrophe is used to differentiate it from the analytical

dimensionless velocity. Note that the dimensionless terminal velocity U
′
= Ca∗

Bo∗
where Ca∗ =

µoU
γ

and Bo∗ = ∆ρgb2

γ
. Correspondingly the time is scaled like t

′
= t∆ρgb

µo
. Otherwise the

length scale is the radius b and the concentration scale is the maximum surface concentration

Γ∞.

The jump in traction is determined from both the normal and tangential components of

the interfacial stress equation. When non-dimensionalized this becomes

∆f ∗ = ...

nMa∗U
′
[(

1

1− θ
− Λθ

)
∇∗sθ + 2κ∗

(
E∗0
n

+ ln(1− θ) +
1

2
Λθ2

)
n+

1

nMa∗U ′
x∗n

]
(6.21)

where Ma∗ is the Marangoni number as defined in the analytical approach and E∗0 = γ0
R̂TΓ∞

is the zero-coverage elasticity number. Aside from the additional U
′

multiplying Ma∗ due to

the difference in scaling, the major difference between the boundary element and analytical

approaches is the boundary element approach allows the drop to deform. The incorporation

of normal stresses results in the new parameter E∗0 .

The first integral on the right-hand side of eq. 6.21 unfortunately exhibits a singularity

of the form −2ln|x − xo| and thus requires some manipulation prior to integration (107).

The singularity is typically handled by subtracting it from the original integral and then

integrating the singularity separately. Details about how the singularity is handled can be

found in the appendix. The second integral is weakly singular but the singularity can be

removed by writing
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PV∫
C

Tijk(x,xo)uj(x)nk(x)d`(x) = ...

PV∫
C

[
Tixk(x,xo) [ux(x)− ux(xo)] + Tiyk(x,xo)uy(x)− ...

Pik(x,xo)uy(xo)

]
nk(x)d`(x)− 4πδixux(xo)− 4πδiyuy(xo)

(6.22)

where P is a new tensor detailed in the appendix (107).

The solution method for the boundary element approach begins with first discretizing the

drop into I boundary elements and I + 1 nodes. The elements are defined by periodic cubic

splines which is detailed in the appendix. As a natural result of the cubic splines first order

accurate approximations of the surface normals and second order accurate approximations of

the surface curvature are found. However it is assumed that the drops will remain spherical

so exact values for the curvature and normals are used.

The solution is initialized by using θeq as prescribed by the Frumkin isotherm and u∗s from

the analytical Hadamard-Rybczynski solution. Then the jump in traction ∆f is determined

at each node. The jump in traction in the single layer potential integral is decoupled from

the velocity Green’s function as described in the appendix and integrated separately. The

jump in traction is integrated over each cubic spline boundary element using Gauss-Legendre

quadrature.

The velocity Green’s functions are then integrated over each cubic spline element while

handling the singularity as discussed in the appendix. Since the velocity Green’s functions

only require information about the geometry and we assuming the drop will remain a sphere,

these only need to be calculated once and are saved for future iterations. This is likewise true

of the stress Green’s functions and additional tensor P . The double layer potential integral

is then integrated over each element using the initial guess of u∗s. The result is a new surface

velocity profile u(xo) at each node on the drop. The method of successive substitutions is
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thus used to converge on the final surface velocity profile dictated by the jump in traction

over the drop surface (109).

Following a converged solution for the velocity profile over the drop surface, the surface

convection-diffusion equation eq. 6.5 is integrated over a single time step ∆t
′

to update

the surface concentration profile. This time does not have a physical meaning since the

analysis is not equipped to handle transient solutions. This integration in time is needed

only to develop the surface concentration and velocity profiles until a converged solution

is found. The time derivative is approximated using a fourth-order Runge-Kutta-Merson

scheme. Then the kinematic condition is used to advance the nodes defining the drop surface:

dx∗o/dt
∗ = u∗(x∗o). This time derivative is also approximated using a fourth-order Runge-

Kutta-Merson scheme. Because the drop is assumed to remain a sphere, this step only serves

to determine the translational velocity of the drop U
′
. The distance between the centroids

of the original and advanced drop profile after ∆t
′

is used to determine the translational

velocity. The advanced drop profile is then disregarded and the original spherical profile is

retained for future iterations.

With the new surface concentration profile the jump in traction is updated and the

processes continues until an equilibrium is reached. An equilibrium is determined when two

criteria are met:

1

∆t′(I + 1)

[∑
(θi,n − θi,n−1)2

] 1
2
< 10−6 (6.23)

and

1

∆t′(I + 1)

[∑
(u∗si,n − u

∗
si,n−1

)2
] 1

2
< 10−6 (6.24)

where n is the current solution and n − 1 is the previous solution. Due to the scaling for

the boundary element approach, the dimensional terminal velocity scaled by the Hadamard-

Rybczynski solution is given by
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𝑈

𝑈𝐻𝑅
 ℓ2-norm 

number of boundary elements number of boundary elements 

a) b) 

Figure 6.3 Comparisons between the a) translational velocities and b) surface velocity
and surface concentration profiles between the analytical and boundary ele-
ment method for Bi∗β = 1, Bi∗α = 1, Pe∗s →∞, Ma∗ = 10 and ξ = 0.1.

U

UHR
= U

′ 3

2

(
2 + 3ξ

1 + ξ

)
. (6.25)

Before continuing the boundary element approach should be validated. To do this the

case where Bi∗β = 1, Bi∗α = 1, Pe∗s → ∞, Ma∗ = 10 and ξ = 0.1 is considered. This case

would not result in appreciable deformation in the boundary element method. In Fig. 6.3(a)

the terminal velocity normalized by the Hadamard-Rybczynski solution using the boundary

element method is plotted versus the number of boundary elements. The analytical solution
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𝑈
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𝑈

𝑈𝐻𝑅
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Figure 6.4 Comparing the translational velocities when initializing with θeq as prescribed
by the Frumkin isotherm (thin line) and when initializing with θ = 0 (thick
line) for Bi∗β = 1, Bi∗α = 1, Pe∗s →∞, Ma∗ = 10 and ξ = 0.1.

is also shown as the horizontal line. In Fig. 6.3(b) the `2-norm between the resulting

surface velocity and surface concentration profiles is also shown. Agreement between the

two methods is excellent, and increasing the number of elements improves the agreement.

The small differences in terminal velocity at a high number of boundary elements may be

due to the presence of an albeit very small normal velocity in the boundary element method.

The number of boundary elements is fixed to I = 200 for the solutions later in this chapter.

To determine if the initial condition has an effect on the final solution, this same case is

initialized two ways using the boundary element method. The first method is the same as

described above where θeq according to the Frumkin isotherm is the initial surface concen-

tration. In the second method the surface initially has no surfactant i.e. θ = 0. Figure 6.4

compares the two. The thin horizontal line in Fig. 6.4 is the final solution when initializing

with θeq and the thick black line shows the velocity initialized with θ = 0 versus t
′
. When

initialized with θ = 0 the drop velocity begins at 0.000003UHR showing good agreement with
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the Hadamard-Rybczynski solution which is valid for θ = 0. Eventually an equilibrium is

found which is identical to the case when initializing with θeq.

6.2.5 Theoretical results - Surface diffusion effects on terminal velocities

There has been a lot of theoretical work on the surfactant-laden buoyancy-driven drop

problem. In ref. (35) the effects of surface diffusion (finite Pe∗s) and surface convection were

considered but without sorption kinetics, while in ref. (36) sorption kinetics and surface

convection were considered but surface diffusion was neglected (Pe∗s → ∞). Here we will

consider how finite Pe∗s can impact the drag a surfactant-laden drop experiences without

neglecting surface convection of sorption kinetics.

When considering surface diffusion, surface convection and sorption kinetics the problem

has four independent parameters that will affect the drag and terminal velocity: Ma∗, Bi∗α,

Pe∗s and the quantity KeqCi. Note that KeqCi = Bi∗β/Bi
∗
α. Figure 6.5 shows how combi-

nations of these four parameters affect drop velocities. All of the results in Fig. 6.5 were

generated using the analytical approach and ξ = 0.001. The figure is composed of 9 indi-

vidual plots. Each individual plot has Pe∗s on the horizontal axis and Bi∗α on the vertical.

The individual plots themselves are contour plots of the drop velocity normalized by the

Hadamard-Rybczynski velocity UHR. The isolines represent the values annotated on each

plot and range from 0.7 to 0.95. Then each row of individual plots has a constant Ma∗

indicated on the far left of the figure, and each column of individual plots has a constant

KeqCi indicated at the very top of the figure. The KeqCi values of 0.1, 1.0 and 10 correspond

to SDS concentrations of 0.065, 0.65 and 6.5 mM, respectively, when using the Keq for SDS

in 1000 cSt Si oil from chapter 4. When using the Keq for SDS in heavy mineral oil, KeqCi

values of 0.1, 1.0 and 10 correspond to 0.014, 0.14 and 1.4 mM, respectively.

Figure 6.5 clearly shows that Pe∗s can affect drop velocities depending on the values of

the other three parameters. To aid in the discussion of Fig. 6.5 the contour plot corre-

sponding to Ma∗ = 10 and KeqCi = 10 (top right) has been annotated. Four regions have
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Figure 6.5 Contour plots of U/UHR are shown where the level of each isoline is anno-
tated on each plot. For each of the nine contour plots the horizontal axis is
the surface Peclet number Pe∗s and the vertical axis is the desorption Biot
number Bi∗α. Each row of contour plots has a constant Ma∗ indicated on
the left-hand side of the figure and each column of contour plots has a con-
stant KeqCi indicated on the top of the figure. The viscosity ratio is fixed at
ξ = 0.001. For the contour plot corresponding to Ma∗ = 10 and KeqCi = 10
four regions are roughly defined by dotted lines. These regions are discussed
in the text.
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been roughly defined by the dashed lines and are labeled (a)-(d). In regions (a) and (b)

the velocity of the drop is nearly unaffected by the presence of surfactants in the system

where velocities are between 0.95UHR and 1.0UHR. In region (a) the primary reason for the

negligible impact of surfactants is the low Pe∗s. Here surface diffusion is so dominant that

surface surfactant concentration gradients, and therefore surface tension gradients, cannot

develop. In region (b) the primary reason for the negligible impact of surfactants is the large

Bi∗α where desorption rates are so relatively large that surfactant is not able to remain on the

surface in order to develop concentration gradients. For the range of Ma∗ and KeqCi shown

the leftmost boundary between regions (a) and (d) occurs when Pe∗s is between O(0.001)

and O(1). Note that the contour plot for Ma∗ = 150 and KeqCi = 10 is cut off on the left

side. The lower boundary of region (b) begins when Bi∗α are between O(10) and O(1000)

and larger.

The other two regions in the annotated plot in Fig. 6.5 include reductions in the drop

velocity relative to UHR. In region (c) the drop velocities can fall between about 0.67UHR and

0.95UHR due to the development of surfactant concentration and surface tension gradients

on the drop surface. The relative velocities in this region, though, are roughly unaffected

by changing Pe∗s. The isolines in this region are essentially horizontal lines and the relative

velocities change only when Ma∗, KeqCi or Bi∗α change. Therefore when combinations of

Ma∗, KeqCi and Bi∗α fall within region (c) surface diffusion effects on the terminal velocity

of the drop can be neglected. The left boundary of this region is diagonal as shown in the

figure. For the range of Ma∗ and KeqCi shown the top left corner of region (c) begins at

the boundary of region (b) and Pe∗s between O(0.1) and O(10). The boundary of region (c)

then follows a diagonal down and to the right.

Region (d) in Fig. 6.5 is the most complicated region and does indicate that changes

in Pe∗s will impact the terminal velocity of the drop. This region is bounded by regions

(a), (b) and (c) and follows diagonally down and to the right between regions (a) and (c).

In this region surface diffusion is strong enough to reduce surfactant and surface tension
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gradients, but large enough surface tension gradients exist to impact the drop velocity.

What is particularly interesting about this region is that, for a roughly fixed Pe∗s, Ma∗ and

Keq, moving vertically upward in the region beginning with a low Bi∗α can result in relative

velocities that decrease and then increase. This is in contrast to region (c) where, for a

roughly fixed Pe∗s, Ma∗ and Keq, moving vertically upward will always increase the relative

velocity.

In the next section the experimental materials and procedure will be discussed followed

by some experimental results, some of which fit within region (d) in Fig. 6.5. Afterward

predicted drag coefficients using the sorption kinetics from chapter 4 will be generated us-

ing either the analytical or boundary element approach followed by a comparison with the

experimental drag coefficients.

6.3 Experimental section

6.3.1 Experimental materials and procedure

Choosing appropriate liquids and materials for an experimental buoyancy-driven surfactant-

laden drop analysis is not trivial. Based on the analysis presented in the previous sections

the experiments must follow certain rules. First the ability to observe drops translating

at low Re∗ is important so that Stokes flow can be assumed. Second the drop phase and

continuous phases should be immiscible so that a discernible surface forms between the two

fluids and no mass from either phase gets lost to the other by diffusion or convection. Next

because the adsorption model to be used assumes only one surfactant is present and it is

only soluble in one phase the experimental materials should be chosen accordingly. The drop

phase is chosen to be aqueous and will contain the surfactant, so that means the surfactant

should be insoluble in the continuous phase and also the continuous phase should not contain

any additional surfactants. For example this excludes vegetable oils such as castor oil which

contain long-chain fatty acids which are surface-active.
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Table 6.1 Experimental liquid properties.

water heavy mineral oil 1000 cSt Si oil
ρ [g cm−3] 1.00 0.900 0.980
µ [mPa· s] 1.0 171 990

The surfactant chosen for the aqueous (deionized water (Fisher)) drop phase had to be

done carefully. In the above analysis Cs was assumed constant and thus Cs = Ci. This

means depletion in the bulk as discussed in chapter 3 could not occur. This excluded the use

of tetraethylene glycol monododecyl ether (C12E4) and similar surfactants in experiments.

Additionally hexadecyltrimethylammonium bromide (CTAB) was shown to have very slow

sorption kinetics in chapter 4 where equilibrium surface tension values could take over 16

hours to reach. This may require long experimental times (long settling distances) for a

balance between surface convection and adsorption to be reached. Therefore CTAB was

excluded as well. Finally it was found that sodium oleate (SO) had a strong tendency to

form different phases in solution after aging for relatively short amounts of time. While the

exact cause for this is unknown, it made the use of SO difficult in practice for experiments

as sensitive as these. The chosen surfactant for these experiments is >99% sodium dodecyl

sulphate (SDS) (Fisher). Based on the analyses in chapters 2, 3 and 4, this surfactant

would not result in depletion in the drop phase and the adsorption and desorption rates

were satisfactorily estimated. The surfactant concentrations will be as high as the critical

micelle concentration (CMC) for SDS which is about 8 mM (57).

The chosen continuous phases required some trial and error. Initially light mineral oil

(Fisher) was chosen, but the viscosity was too low to keep Re∗ small for a sufficient range

of drop volumes. Instead two other continuous phase liquids were chosen: heavy mineral oil

(paraffin oil) (Fisher) and 1000 cSt silicone (Si) oil (Clearco). The important properties of

each continuous phase liquid as well as the properties of water are summarized in table 6.1.
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Figure 6.6 The setup for settling drop experiments consisting of a) the acrylic tank, b)
a ruler, c) a syringe pump with a loaded syringe, d) the drop, e) a CCD
camera, f) another CCD camera, g) a lamp to illuminate experiments, and
h) a lamp to illuminate the ruler.
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As will be evident in the results section, it is suspected that something in the mineral oil is

slightly surface active.

Also an issue with the 1000 cSt Si oil was encountered after performing experiments over

several days. After several days of aqueous drops containing SDS falling in the Si oil it was

observed that the oil started to become slightly cloudy. While it is unclear what the cause

was, one possible explanation is that over time very fine droplets (micro-emulsion) have

accumulated in the tank which could diffuse throughout. No drop breakup or deformation

was observed while drops settled but these droplets could be too small to observe without a

microscope. Experiments of 300 µl drops falling in 1000 cSt Si oil were performed just as the

cloudiness started to be apparent. These were therefore the last set of experiments performed

since it would be unclear what effect the cloudiness would have on experiments. In Fig. 6.7

for two of these 300 µl drops particulates can be seen streaming from the rear of both a

0.01 and 8 mM SDS drop. The fact that the tail appears for 0.01 mM SDS drops where the

surface tension does not decrease much at the rear would likely rule out any breakup from

the drop itself. Regardless these observations limited the number of experiments performed

and further demonstrates the difficulty in performing these experiments.

A photo of the experimental setup is shown in Fig. 6.6. The settling drop experiments

were performed using an acrylic tank with a 145×145 mm base and 275 mm height which was

filled with oil. These dimensions should prevent any wall effects (110). The acrylic contained

an antistatic coating to limit any potential triboelectric effects, and the top was covered

with another acrylic piece with a small access hole to limit dust and other contaminants

from falling in. A ruler was placed along the inside wall of the tank to determine the length

scale in experimental images. A syringe pump (New Era Pump Systems) was fixed above

the tank. Two CCD cameras (Pixelink) were used. The camera labeled ”E” in Fig. 6.6 was

used for close-up images of drops where resolutions were between 10 and 50 µm per pixel

width. This camera was responsible for determining drop volumes in all experiments and for

determining drop velocities in experiments using 1000 cSt Si oil. The other camera labeled
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a) b) 

tail 

2 mm 

Figure 6.7 Experimental images of 300 µl drops containing a) 0.01 mM SDS and b) 8
mM SDS falling in 1000 cSt Si oil. The images show particles streaming
from the rear of each drop.

”F” in Fig. 6.6 was used for determining settling drop velocities in experiments using heavy

mineral oil. A vertical lamp illuminated drops from behind, and a small lamp labeled with

”H” in Fig. 6.6 was used to illuminate the ruler inside the tank.

Placing drops in the tank had to be done mindfully. This was done using one of two

methods. In the first the syringe pump was used to dispense a pendant drop from a 100 µl

glass syringe (Hamilton) with a certain volume. The pendant drop was left suspended on the

syringe needle for 10 minutes, allowing the surface tension to reach an equilibrium according

to the experiments from chapter 4. After the 10 minutes the drop was gently detached by

tapping the needle. This method was only suitable if drop volumes were not too large and

surface tensions were not too low as to cause the drop to detach before 10 minutes.

In the second and more often used method, drops of a desired volume were pipetted into a

weighing dish that was filled with either heavy mineral oil or 1000 cSt Si oil as shown in Fig.

6.8(a). Again the drops were left untouched for 10 minutes to allow surfactant adsorption
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Figure 6.8 In (a) 4 different sized aqueous drops with 8 mM SDS are submerged in 1000
cSt Si oil. In (b) a 100 µl drop is transported to the tank using a pipette.

to reach an equilibrium. After 10 minutes a single drop was aspirated along with a small

amount of the oil as shown in Fig. 6.8(b). The drop was then dispensed in the acrylic tank.

As the drop began falling in the oil-filled acrylic tank, the close-up camera took several

images of the drop to determine the volume and drop radius. Drop volumes ranged from 0.5

to 300 µl in the heavy mineral oil and 5 to 300 µl in the 1000 cSt Si oil. For the 1000 cSt Si

oil experiments the close-up camera also was responsible for determining the drop velocity

by capturing its position versus time. Drops falling in heavy mineral oil had faster terminal

velocities and so the camera situated further from the tank was used to determine the drop

velocity. At least 10 sequential images of the drop falling were used to determine its position

versus time and thus its velocity. Time intervals between images were then between 1 and

10 seconds depending on the oil and drop volume. A linear best fit of the position versus

time data was used to determine the velocity. Terminal velocities were between 0.5 and 35

mm s−1 for experiments in heavy mineral oil and between 0.05 and 1 mm s−1 in the 1000

cSt Si oil.
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6.3.2 Experimental results

In Fig. 6.9(a) an example close-up image of a 100 µl drop of 7 mM SDS settling in

heavy mineral oil is shown. The exposure time of the camera needed to be long enough to

collect enough light to observe the drop. However the drop passed in and out of the frame

quickly due to a combination of the drop velocity and zoom of the camera, leaving the top

and bottom a little blurry. The distance from the left edge to the right edge of the drop is

therefore used to estimate the drop diameter and then volume. In Fig. 6.9(b) a sequence

of images of the same drop taken at 1 s intervals using the farther away camera are shown.

Each experiment in heavy mineral oil consisted of a collection of images like those in Fig.

6.9. Due to the increased viscosity and density of the Si oil, only one camera was needed

to both measure the drop size and drop velocity. In Fig. 6.10 several example experimental

images of a 20 µl 8 mM SDS drop settling in 1000 cSt Si oil are shown where the time

interval between images is 5 s. The entire sequence of images is not shown. Each 1000 cSt

Si oil experiment contained a sequence of images like those shown in Fig. 6.10.

In the analysis section the drag coefficients for a clean drop C∗d,HR and a solid sphere C∗d,St

were defined. In the case of a surfactant-laden drop the drag coefficient is not assumed to be

known a priori. In assigning a drag coefficient to experiments C∗d,exp where surfactant-laden

drops translate steadily due to buoyancy the drag force it experiences is still equal to the

buoyant force. It follows that the drag coefficient for the experiments can be defined as

C∗d,exp =
8

3

∆ρgb

ρoU2
. (6.26)

When comparing the experimental drag coefficient C∗d,exp to the Hadamard-Rybczynski drag

coefficient C∗d,HR, if C∗d,HR is determined using the Re∗ from the experiment that produced

C∗d,exp, then C∗d,HR/C
∗
d,exp = U/UHR where U is the experimentally measured terminal velocity

of the drop. Therefore all C∗d,HR and C∗d,St appearing below are determined using the Re∗

from experiments.
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a) 

b) 
1 mm 

10 mm 

Figure 6.9 In (a) the close-up view of a 100 µl 8 mM SDS drop falling in heavy mineral
oil that is used to determine the drop volume is shown. In (b) an example
sequence of images showing the same 100 µl drop settling over time is shown.
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2 mm 

Figure 6.10 An example sequence of images showing a 20 µl 8 mM drop settling in 1000
cSt Si oil is shown.

Figure 6.11(a) shows the experimental drag coefficient for drops of water and drops of 8

mM SDS falling in heavy mineral oil. For the 8 mM SDS drops shown, Marangoni numbers,

Ma∗, ranged from 112 for the smallest drop (lowest Re∗) to 1.5 for the largest drop. The

horizontal axis is the Reynolds number, and the Hadamard-Rybczynski (C∗d,HR) and Stokes

(C∗d,St) drag laws are also shown and the straight solid and dotted lines, respectively. The

drag coefficients C∗d,HR and C∗d,St are calculated using the experimental Re∗. This will be

true here and elsewhere in the presentation of the results. Figure 6.11(b) contains the same

data as in Fig. 6.11(a) but here the drag coefficients are normalized by C∗d,HR. Note that

C∗d,HR is in the numerator. As Re∗ → 1 both the water and 8 mM SDS drops follow C∗d,HR.

However as Re∗ decreases the drag coefficients increase relative to C∗d,HR, approaching C∗d,St

and indicating solid sphere behavior. This may be expected in the 8 mM SDS drops where

the surfactant should introduce Marangoni stress and slow the drop down relative to an
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Cd,HR
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Cd,exp
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Cd,exp
∗  

Re∗ 

a) b) 

Figure 6.11 In (a) the drag coefficients for different sized aqueous drops with either no
SDS or 8 mM SDS are plotted versus Re∗. The upper dashed line rep-
resents the Stokes drag coefficient and the lower solid line represents the
Hadamard-Rybczynski drag coefficient. In (b) the experimental drag coef-
ficients from (a) are normalized by the Hadamard-Rybczynski drag coeffi-
cient to show the transition from the solid sphere regime to the fluid sphere
regime. The vertical lines are error bars representing the uncertainty in
drop velocity and radius measurements.
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Cd,HR
∗
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∗  

Figure 6.12 The experimental drag coefficients for 100 µl aqueous drops are plotted
versus Ci. The vertical lines are error bars representing uncertainty in
drop velocity and size. The predicted drag coefficients using SDS(aq) - heavy
mineral oil sorption kinetics and the boundary element method are also
shown.

ideal fluid sphere. The small Ma∗ at higher Re∗ could explain the remobilization of the drop

surface. But this is not expected in the clean water drops. Because the water drops show

signs of additional drag at the lower Re∗, it is reasonable to suggest that the heavy mineral

oil contains some surface-active components.

Since it is unknown what exactly is causing the increase in drag for smaller clean water

drops, those experiments cannot be analyzed using the tools described earlier in this chapter.

Additionally as Re∗ → 1 and higher the assumption of Stokes flow necessary for the analysis

begins to break down. Going forward it was decided to perform additional experiments using

100 µl drops (Re∗ ∼ 0.5) and varying concentrations of SDS since this was the smallest

volume at which the Hadamard-Rybczynski velocity was observed for the clean water drops.

In Fig. 6.12 the normalized drag coefficients for 100 µl drops settling in heavy mineral

oil are plotted versus the bulk concentration of SDS. Using the adsorption kinetics from
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Re∗ 

Cd,exp
∗  

Figure 6.13 The drag coefficients for different sized aqueous drops with either no SDS,
0.01, 0.1, 1 or 8 mM SDS are plotted versus Re∗. The upper dashed line
represents the Stokes drag coefficient for solid sphere and the lower solid
line represents the Hadamard-Rybczynski drag coefficient for fluid sphere
without surfactant.

chapter 4, the desorption Biot numbers, Bi∗α, range from 0.5 at 0.125 µM SDS to 1×10−4

at 8 mM SDS. Experimental drag coefficients and other dimensionless operating parameters

are tabulated in Table 6.3 later in this chapter. For concentrations between 1 µM and 4

mM the drops fell according to Stokes law i.e. like solid spheres. Below 1 µM the drag

coefficients began decreasing and approached C∗d,HR. Interestingly the drag coefficients also

decreased relative to C∗d,HR as the CMC was approached. Behavior like this at high surfactant

concentrations has been observed before and could be explained by the onset of micelle

formation (111). Because the drop sizes and velocities are fairly large it is not expected that

low Pe∗s are observed and thus surface diffusion would not be the culprit.

Figure 6.13 is similar to Fig. 6.11(a) where experimental drag coefficients are plotted

versus Re∗ for experiments in 1000 cSt Si oil. The experimental drag coefficients and other
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Figure 6.14 The experimental drag coefficients from Fig. 6.13 are normalized by C∗d,HR
and plotted versus Ci for several drop volumes. The vertical lines are error
bars representing the uncertainty in drop velocity and radius measurements.

dimensionless operating parameters are tabulated in Table 6.2 later in this chapter. In Fig.

6.13 the upper and lower lines again represent C∗d,St and C∗d,HR, respectively. Marangoni

numbers fell between 5 at the highest Re∗ and 65 at the lowest Re∗. At the smallest Re∗ all

drops fell approximately according to the Hadamard-Rybczynski drag law. The clean water

drops fell approximately according to the Hadamard-Rybczynski drag law for all Re∗ within

5% which can be attributed to experimental error. The drag coefficients of drops containing

surfactant however began deviating from C∗d,HR as Re∗ increased.

The drag coefficients from Fig. 6.13 excluding those for water are normalized by ∗c,HR and

plotted in Fig. 6.14 versus bulk surfactant concentration Ci. This highlights some interesting

trends that set the 1000 cSt Si experiments apart from the heavy mineral oil experiments.

First no drop had drag coefficients equal to C∗d,St (the lower horizontal line indicated in Fig.

6.14), and larger bulk concentrations of SDS were required to affect drop velocities compared
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to the heavy mineral oil experiments. Next the 5 µl drops were essentially unaffected by the

presence of surfactant, and larger drops were affected most with 200 and 300 µl drops seeing

the largest relative reduction in drag at 1 mM SDS. This may at first be counterintuitive

since small drops with large Ma∗ would be expected to be more affected by Marangoni

stress than larger drops with small Ma∗. This was in fact the case in the heavy mineral

experiments seen in Fig. 6.11(b). But one must keep in mind that drop velocities are orders

of magnitude smaller in the 1000 cSt Si oil. This results in larger Bi∗α and smaller Pe∗s

which can make surface diffusion relevant. Using the sorption kinetics models from chapter

4, for the 5 µl drops 0.005< Bi∗α <20, for 20 µl drops 0.004< Bi∗α <13, and for 100 µl drops

0.0025< Bi∗α <8, all of which are much larger than the Bi∗α observed in the heavy mineral

oil experiments. The 200 and 300 µl drops had smaller Bi∗α that ranged from 0.002 at 8 mM

SDS to 5 at 0.01 mM SDS. While a surface diffusion coefficient Ds is unknown, the smaller

velocities and in some cases smaller drop volumes will also result in much smaller Pe∗s than

in the heavy mineral oil experiments. Therefore surface diffusion is likely reducing surface

concentration gradients and Marangoni stress in the smaller drops.

6.3.3 Theoretical results using experimental sorption kinetics

In the experimental results some fundamental differences between experiments in heavy

mineral and experiments in 1000 cSt Si oil were found. Specifically in the 1000 cSt Si oil

it was found that the terminal velocity of larger drops were generally more affected by the

addition of surfactant than smaller drops relative to the Hadamard-Rybczynski velocity for

clean drops. Surface diffusion could explain some of this behavior.

In generating theoretical drag coefficients for experiments in 1000 cSt Si oil the sorption

kinetics for SDS in 1000 cSt Si oil in chapter 4 are used. In the experiments performed

in 1000 cSt Si oil the Bi∗α, Ma∗ and KeqCi values are relatively large so the analytical

approach is used to predict drag coefficients to compare to experiments in 1000 cSt Si oil.

Additionally since surface diffusion will not be neglected here the addition of surface diffusion
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further reduces the magnitude of surface concentration gradients. This helps in having the

analytical solution converge on a solution since the surface concentration is represented by a

truncated series of Legendre polynomials. The smoother concentration profiles require less

terms in the Fourier-Legendre series.

In contrast to experiments performed in 1000 cSt Si oil, the experiments in heavy mineral

oil had small values for Bi∗α, Ma∗ and KeqCi. This meant the analytical approach becomes

quite stiff and difficult to converge. Instead the boundary element approach was used to

compare to experiments in heavy mineral oil. The sorption kinetics for SDS in heavy mineral

oil from chapter 4 are used.

If surface diffusion were neglected it would be impossible to have smaller drops be less

affected by Marangoni stress than larger drops with the same bulk concentration as observed

in experiments in 1000 cSt Si oil from Fig. 6.14. As discussed earlier surface diffusion may

be able to help explain some of the differences between the 1000 cSt Si oil experiments and

the heavy mineral oil experiments. By incorporating surface diffusion, a new unknown must

be determined which is the surface diffusion coefficient Ds. The surface diffusion coefficient

is difficult to determine and is not known for these experiments, so Ds is treated as a fitting

parameter.

Through some trial and error, it was found that a surface diffusion coefficient of Ds =

4 × 10−7 m2 s−1 provided good agreement with experimental drag coefficients while still

using the sorption kinetics from chapter 4. This value is quite large compared to diffusion

coefficients in the literature, but again the surface diffusion coefficient here is treated as

a fitting parameter. A potential physical explanation for such a large surface diffusion

coefficient could be that it incorporates some additional non-ideal repulsive interactions

between adsorbed surfactant molecules similar to the interaction parameter in eq. 6.6.

Carrying on with this value for Ds, the analytical approach was solved for varying drop

sizes and bulk concentrations to be compared to the experiments. In Fig. 6.15 the nor-

malized analytical drag coefficients for the four bulk concentrations used in experiments are
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Figure 6.15 The drag coefficients using SDS(aq) - 1000 cSt Si oil sorption kinetics from
chapter 4 and Ds = 4×10−7 m2 s−1 predicted by the analytical approach are
normalized by C∗d,HR and plotted versus Re∗ as solid lines. The normalized
experimental drag coefficients from Fig. 6.14 are also plotted versus Re∗ as
the markers indicated in the legend. The colors of the analytical solution
curves correspond to the experimental marker colors. The black horizontal
line at the bottom of the plot represents C∗d,HR/C

∗
d,St.

plotted versus Re∗ as solid and dashed lines. Re∗ primarily indicates changes in drop size

here. The experimental normalized drag coefficients from Fig. 6.14 are also plotted here for

comparison. Using Ds = 4× 10−7 m2 s−1 the result of smaller drops (smaller Re∗) being less

affected by Marangoni stress than larger drops is observed which agrees qualitatively with

the experiments. The experimental results suggested the 8 mM drops fell faster relative to

an ideal clean drop than 0.1 and 1 mM drops at lower Re∗ and this is also seen in Fig. 6.15.

Also at higher Re∗ the experiments showed 1 mM drops falling slower relative to a clean

drop followed by 0.1 mM and then 8 and 0.01 mM drops. This result is seen in the analytical

solutions.
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Figure 6.16 The surface surfactant concentration and surface velocity is visualized for
several 100 µl drops with different Ci in heavy mineral oil as predicted by the
boundary element method. The left half of each drop shows the surfactant
concentration and the right half shows the surface velocity.
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Figure 6.17 The surface surfactant concentration and surface velocity is visualized for
several 300 µl drops with different Ci in 1000 cSt Si oil as predicted by the
analytical approach using SDS(aq) - 1000 cSt Si oil sorption kinetics and
Ds = 4 × 10−7 m2 s−1. The left half of each drop shows the surfactant
concentration and the right half shows the surface velocity.
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Figures 6.16 and 6.17 show qualitatively the predicted surface surfactant concentration

profiles and surface velocity profiles plotted in polar coordinates for 100 µl drops falling in

heavy mineral oil and 300 µl drops falling in 1000 cSt Si oil, respectively. The solid black

circle is the drop surface, the left half shows the surface concentration profile, and the right

half shows the velocity profile. The profiles shown in Fig. 6.16 for 100 µl drops falling in

heavy mineral oil were determined using the boundary element method, and those in Fig.

6.17 were determined using the analytical approach. The bulk surfactant concentrations for

each simulation are annotated on each drop.

In Fig. 6.16 at the smallest concentration Ci = 0.25 µM a very small amount of surfactant

accumulates at the rear, making a very small impact on the surface velocity at the rear.

Otherwise the surface is almost completely mobile and the drop falls only slightly slower

than a drop without any surfactant. At 2 µM the boundary element method predicts the

drag coefficient to be about 10% higher than a clean drop. A noticeable increase in surfactant

is shown in the rear and a clear stagnant cap region emerges. The stagnant cap grows at

Ci = 5 µM. By 20 µM surfactant covers a majority of the surface with now an even greater

amount accumulating at the rear. This causes the surface velocity to decrease to zero at the

back half of the drop and the drag coefficient as predicted by the boundary element method

has approached C∗d,St.

The profiles in Fig. 6.17 of drops falling in 1000 cSt Si oil are fundamentally different

from those in heavy mineral oil. At 0.01 mM some surfactant adsorbs to the surface but

the profile is nearly uniform. The lack of strong surfactant and surface tension gradients

results in almost no effect on the surface velocity. At 0.1 mM more surfactant adsorbs but

the gradient in surfactant concentration is gradual from the front to the rear. The gradient

is enough to affect the surface velocity, but no stagnant cap develops and only about a 15%

reduction in the drag coefficient relative to C∗d,HR is predicted. The 1 and 8 mM results are

slightly amplified versions of the 0.1 mM result. The 8 mM result actually predicts that

there will be slightly less surfactant on the surface than 1 mM. This is due to the way the
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poles are handled in the analytical approach. The boundary condition at the poles is only

a symmetry condition, and so surfactant that reaches either pole is allowed to reenter the

drop bulk. Diffusion becomes so dominant in the 8 mM solution that surfactant reenters the

drop bulk at the poles.

6.3.4 Comparisons between experimental and predicted drag coefficients

Table 6.2 shows experimental drag coefficients for drops falling in 1000 cSt Si oil as well

as those predicted by the analytical approach. The percent difference included in the table

is defined by %error = 100× |C∗d,exp−C∗d,pred|/C∗d,exp. The experimental drag coefficients are

the same as those in Fig. 6.13. Also included in Table 6.2 are values for Re∗, Ma∗, Bi∗α

and KeqCi. For the chosen value of Ds = 4 × 10−7 m2 s−1 the corresponding Pe∗s are also

shown. The Re∗ are orders of magnitude smaller than the experiments in heavy mineral oil.

Due to the much slower terminal velocities, Ma∗ and Bi∗α are also considerably larger. The

estimated Pe∗ are between O(0.1) and O(10). Based on the results of Fig. 6.5 these low

Pe∗s in combination with the Ma∗, KeqCi and Bi∗α would suggest that surface diffusion is

significant.

When comparing the predicted and experimental drag coefficients it is important to keep

in mind that a single set of five constants were used to model the adsorption and desorption

processes: Γ∞, Λ, β̂0, α̂0 and the exponent m. The bulk concentration Ci and drop radius

b were determined by the experiments, and the surface diffusion coefficient was treated as a

fitting parameter and fixed to Ds = 4× 10−7 m2 s−1. With this in mind the predicted drag

coefficients were within about 15% of the experimental values save for a few cases as seen

in Table 6.2. This is over a range of drag coefficients that spans two orders of magnitude.

Considerably better agreement was found for Ci = 0.1 and Ci = 1 mM where the percent

error was between 0.1% and 16.2%. The worst agreement was seen for drops with 8 mM

SDS. In the heavy mineral oil experiments, as the CMC was approached the drag coefficients

decreased significantly. As mentioned earlier this behavior has been observed before (111)
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Table 6.2 Experimental and predicted drag coefficients for aqueous drops containing dif-
ferent concentrations of SDS falling in 1000 cSt Si oil. The experimental Re∗,
Ma∗ and Bi∗α are also shown. Estimates for Pe∗s using Ds = 4 × 10−7 m2

s−1 are shown as well. The quantity KeqCi is determined using the Keq from
Table 4.1.

V Ci Re∗ Ma∗ Bi∗α KeqCi Pe∗s C∗d,exp C∗d,pred % error
[µl] [mM] – – – – – – – –
5 0.01 0.000179 64.5 19.7 0.0153 0.226 94400 91200 3.4
5 0.1 0.000189 60.2 1.12 0.153 0.238 81100 94300 16.2
5 1 0.000177 63.4 0.0713 1.53 0.223 88500 93000 5.1
5 8 0.000186 61.1 0.00564 12.2 0.235 83400 91800 10.0

20 0.01 0.000550 31.6 14.5 0.0153 0.695 34200 25900 24.3
20 0.1 0.000591 29.2 0.820 0.153 0.747 28800 29000 0.7
20 1 0.000570 30.3 0.0525 1.53 0.720 31100 28600 8.0
20 8 0.000627 27.2 0.00376 12.2 0.791 24800 27600 11.3

100 0.01 0.00267 11.1 8.64 0.0153 3.37 7110 5280 25.8
100 0.1 0.00266 11.1 0.536 0.153 3.36 7180 6860 4.5
100 1 0.00257 11.4 0.0335 1.53 3.25 7480 7490 0.2
100 8 0.00257 11.3 0.00266 12.2 3.25 7270 6950 4.4

200 0.01 0.00601 6.24 6.18 0.0153 7.58 2870 2520 12.3
200 0.1 0.00544 6.90 0.422 0.153 6.87 3520 3440 2.1
200 1 0.00508 7.37 0.0280 1.53 6.42 4000 4110 2.8
200 8 0.00609 6.20 0.00190 12.2 7.69 2850 3850 34.9

300 0.01 0.00887 4.80 5.41 0.0153 11.2 1930 1700 11.9
300 0.1 0.00784 5.46 0.382 0.153 9.90 2510 2360 6.0
300 1 0.00772 5.55 0.0239 1.53 9.75 2600 2960 13.9
300 8 0.00925 4.59 0.00159 12.2 11.7 1970 2810 42.6
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Table 6.3 Experimental and predicted drag coefficients for aqueous drops containing dif-
ferent concentrations of SDS falling in heavy mineral oil. The experimental
Re∗, Ma∗ and Bi∗α are also shown. The quantity KeqCi is determined using
the Keq from Table 4.1.

Ci [mM] Re∗ Ma∗ Bi∗α KeqCi C∗d,exp C∗d,pred % error

0.000125 0.447 2.84 0.527 0.000906 38.6 33.7 12.7
0.00025 0.400 3.17 0.345 0.00181 48.0 34.1 29.0
0.0005 0.354 3.59 0.229 0.00363 61.0 34.9 42.8
0.000625 0.323 3.93 0.2111 0.00453 73.6 35.4 51.9
0.00125 0.323 3.93 0.124 0.00906 73.9 37.5 49.3
0.0025 0.322 3.94 0.073 0.0181 74.1 41.5 44.0
2 0.322 3.94 0.000424 14.5 74.2 – –
4 0.321 3.96 0.000250 29.0 74.9 – –
7 0.340 3.74 0.000153 50.8 66.6 – –
8 0.426 2.98 0.000110 58.0 42.4 – –

and the theoretical analysis presented in this chapter is not equipped to explain it. It is

possible that the mechanism causing the decrease in drag near the CMC in heavy mineral

experiments is having the same effect in the 1000 cSt Si oil experiments.

The open squares in Fig. 6.12 represent solutions of the boundary element method using

the sorption kinetics from chapter 4 and a non-deforming drop. The experimental and

predicted drag coefficients along with the dimensionless operating parameters are tabulated

in Table 6.3. It is assumed Pe∗s are large enough that surface diffusion can be neglected.

While similar trends are seen in Fig. 6.12 with regards to how C∗d changes with Ci, the

numerical results are shifted right by about one order of magnitude in Ci. The percent error

between the experimental and predicted drag coefficients are fairly large as seen in Table 6.3.

Again this shift could potentially be explained by the presence of some unknown surface-

active component in the heavy mineral oil as deduced from Fig. 6.11. Also the fact that

the boundary element results underestimate the impact of adding surfactant suggests that

surface diffusion is not a factor in these experiments; incorporating surface diffusion would

cause the drag to be reduced even more in the simulations. Finally it should be noted that
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Re∗ ∼ 0.4 for these experiments could also be limiting the ability to use theory based on a

Stokes flow assumption.

6.4 Discussion and conclusions

In this chapter the terminal velocities of aqueous drops settling under gravity in heavy

mineral oil or 1000 cSt Si oil were measured. The varying surfactant concentrations in

the drop phase were used as well as varying drop volumes. Then using sorption kinetics

determined experimentally in chapter 4, theoretical predictions of the drop drag coefficients

were made using either an analytical or boundary element approach. Qualitative agreement

for drag coefficients was found between the theoretical predictions and the heavy mineral oil

experiments while both qualitative and some quantitative agreement was found in the 1000

cSt Si oil system.

Based on experimental observations in the heavy mineral oil system, it is possible that

the heavy mineral oil itself contains some surface-active components. Evidence for this was

presented in Fig. 6.11 where drops of deionized water had drag coefficients greater than

those predicted by the Hadamard-Rybczynski drag law when volumes were less than 100

µl. Since the 100 µl clean water drops were the smallest drops to follow C∗d,HR and larger

drops had Re∗ → 1 which could make the Stokes assumption less valid, the 100 µl volume

in heavy mineral oil was chosen to observe how changes in surfactant concentrations in the

bulk affected drop velocities. When using the sorption kinetics from chapter 4 qualitative

agreement was found between theory and experiment as far as how the drag coefficient

normalized by C∗d,HR varied with Ci in Fig. 6.12. The theoretical curve however was shifted

right by an order of magnitude in Fig. 6.12. This provides additional evidence that surface-

active components could be present in the heavy mineral oil.

The experiments in 1000 cSt Si oil exhibited behavior that was fundamentally different

from the heavy mineral oil experiments. Whereas decreasing the drop volume increased

the relative impact of Marangoni stress in the heavy mineral oil experiments, in the Si oil
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experiments the smallest drops were least affected by the addition of surfactant. In fact the

5 µl drops falling in 1000 cSt Si oil were essentially unaffected by the addition of surfactant.

The drops most affected by the addition of surfactant were the largest at 200 and 300 µl,

and no drop fell according the the Stokes drag law i.e. like a solid sphere. The most likely

explanation for this behavior is that surface diffusion has become important in contrast to

the experiments in the less dense and less viscous heavy mineral oil. The drop velocities

were orders of magnitude smaller in the Si oil, causing Bi∗α to be orders of magnitude larger

and Pe∗s to be orders of magnitude smaller.

Since surface diffusion coefficients are unknown for the systems studied, the surface dif-

fusion coefficient Ds was treated as a fitting parameter. After trial and error a value of

Ds = 4× 10−7 m2 s−1 was determined to best fit all of the 1000 cSt Si oil data. While this

is a large value, its magnitude could possibly be explained by its accounting for potential

net repulsive interactions between adsorbed surfactant molecule. Net repulsive interactions

between SDS surfactant molecules was determined from fits of the Frumkin isotherm and

equation of state to equilibrium surface tension data. Using this Ds and the sorption kinetics

model from chapter 4, good agreement between experimental drag coefficients and predicted

drag coefficients using the analytical approach was found in Table 6.2 for a good portion of

the experimental cases. This was particularly true for the 0.1 and 1 mM SDS experiments

where the theoretical predictions agreed within 10% for all but two cases. It should be

emphasized that these predictions were all made using one set of constants with the bulk

surfactant concentration of SDS and the drop volume being the only variables.

In the future it would be beneficial to perform experiments with other surfactants that fit

the assumptions made in the theory. However prevention of contamination and degradation

of the experimental materials has been found to be difficult. Future theoretical work would

benefit from the inclusion of bulk mass transfer phenomena including convection and diffu-

sion. Additionally the boundary element method is well suited to model multiple drops and

their interactions (112; 113). As this chapter has demonstrated the ability to use experimen-
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tally determined sorption kinetics to predict the velocities of single surfactant-laden drops,

the same sorption models may be able to predict experiments involving multiple drops.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

In this thesis the main goal was to use experimentally determined surfactant sorption

models to predict and explain behavior observed in interfacial fluid dynamics problems. The

first fluid dynamics problem involved a single aqueous surfactant-laden drop in a partially

oil-filled rotating horizontal cylindrical tank. The second problem involved a single aqueous

surfactant-laden drop settling in an oil under gravity. However prior to studying the fluid

dynamics problems the surfactant systems had to be characterized.

Characterizing the surfactant systems began with measuring surface tension in chapter 2.

In that chapter the pendant drop method was used which has become a relatively common

and robust measurement technique. However a novel use of the non-gradient-based pattern

search minimization algorithm was used to fit drop profiles prescribed by the Young-Laplace

equation to experimental drop profiles. The pattern search method used here has been

mathematically proven to be capable of consistently converging to a local minimum (52; 53).

The algorithm is fast, easy to implement and robust in terms of sensitivity to initial guesses

in contrast to gradient-based solvers like the Newton-Raphson method (16).

In addition the pattern search algorithm was used to fit the Frumkin isotherm and equa-

tion of state to surface tension data to estimate equilibrium surfactant sorption parameters.

The convergence criteria was analyzed for the equation and the upper bound limit for the

molecular interaction parameter Λ was extended using a Taylor series expansion of the

Frumkin isotherm equation for small fractional surface coverage. The curve fits from the

pattern search method and stability criteria determined from linearization of the Frumkin

isotherm fit the data fairly well.
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The analysis from chapter 2 was extended in chapter 3 to include the effects of depletion

of surfactant in the bulk. Three pendant drop/bubble variations were used to measure

γeq for nonionic C12E4 at an air-water interface. The pendant bubble experiments were

not affected by depletion, but the pendant drops were. Regardless fits of the Frumkin

equation of state with the modified Frumkin isotherm presented in chapter 3 were used

to determine equilibrium surfactant sorption parameters for each case, and the parameter

values were all in excellent agreement. The modified isotherm presented in 3 gives more

flexibility in designing pendant drop experiments, and the resulting analysis allows for an

accurate prediction for when depletion will be significant. This would be helpful when

designing small-scale interfacial experiments such as in microfluidic devices where surface

area to volume ratios can become quite large.

Chapter 4 continued the characterization of the surfactant systems by determining the

adsorption and desorption rates necessary in modeling interfacial fluid dynamics problems.

The systems for which models were developed involved surfactant that was soluble in one

phase and insoluble in the other. Using the analysis in chapter 3 depletion effects in the

bulk were neglected. Additionally a diffusion length scale for the case when surfactant resides

inside a sphere was developed and used to predict when bulk diffusion would be important.

Afterward transient surface tension data was fit to an adsorption-desorption model both

with and without accounting for diffusion. The adsorption-desorption models were fit again

using the pattern search algorithm. For certain systems the sorption rates when accounting

for diffusion and when neglecting diffusion did not differ much, suggesting bulk diffusion could

be neglected. For the systems where both depletion and bulk diffusion could be neglected,

it was found that sorption rate constants varied with the bulk surfactant concentration

to some exponent m. The adsorption-desorption model was then modified to reflect this

concentration dependence, and a single set of five constants could then be used to characterize

a surfactant system.
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The first of two fluid dynamics problems studied was presented in chapter 5. There a

single aqueous drop with or without surfactant was placed in a horizontal cylindrical rotating

tank half-filled with light mineral oil. As the tank rotated, the drop reached an equilibrium

position in the tank where a thin film of oil separated the drop from the tank wall. Focusing

on the thin film, the analysis treated the drop-containing flow as a thin film problem. The

experiments themselves were unique and provide a new experiment approach to studying

thin films.

The aqueous drop contained either sodium oleate (SO) or sodium dodecyl sulfate (SDS).

Both of these surfactants were similar physically, being anionic and containing a long hydro-

carbon tail. But as seen in chapter 2 the two surfactants have roughly equal and opposite

Frumkin interaction parameters Λ, where the SO experiences net attraction between sur-

factants and the SDS experiences net repulsion. This had a significant impact on drop

deformation and the onset of tail streaming at higher capillary numbers.

Since it is well known that surfactant and surface tension gradients will develop on the

drop surfaces, assigning a capillary number to each experiments is difficult. Using numerical

integration of the thin film equations incorporating the sorption kinetics determined in earlier

chapters, predictions for the film thickness as a function of the capillary number based on the

clean (no surfactant) surface tension were made. These predictions were in good agreement

with experimental observations, so the numerically generated surface surfactant concentra-

tion profiles were further used to characterize the experiments by making better predictions

for the capillary number. These updated capillary numbers used the minimum surface ten-

sion predicted over the drop surface, and relationships between drop stretching relative to a

drop without surfactant and the new capillary number were shown. The transition from lit-

tle drop stretching to significant drop stretching occurred when the new estimated capillary

numbers were between 0.1 and 1. This range agrees with other experimental observations

involving drop deformation and breakup (10).
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The numerical results provided some additional explanations for differences between

drops with SO and with SDS. First due to the differences in Λ the SO is predicted to

be able to reach surface surfactant concentrations approaching Γ∞ well before the bulk criti-

cal micellar concentration is reached, while this is not the case for SDS. This is a result that

could only be accounted for using the Frumkin isotherm and equation of state, highlighting

the importance of using a proper equation of state. The lower surface coverages in SDS

drops explains why those drops appeared to be less affected by adding surfactant in experi-

ments. Next a flow reversal was observed at the rear of the 2 mM SO drops in simulations

using the stationary wall frame of reference, providing a possible explanation for the onset

of tail streaming observed in experiments. However since the experiments include three-

dimensional effects it is not conclusive that this flow reversal observed in solutions of the

two-dimensional thin film equations is responsible for tail-streaming. Still the numerical re-

sults incorporating experimentally determined sorption kinetics provided interesting insight

into not only how gradients in surface tension affect the flow but how different surfactants

can have a significant impact on deformation and breakup.

The sorption models developed in chapter 4 were again used in chapter 6. In that chapter

the terminal velocity of a single surfactant-laden drop was measured as it settled in another

viscous fluid under gravity. By incorporating the sorption models into the analysis, quali-

tative agreement was found between the theoretical predictions and experiments performed

in heavy mineral oil while both qualitative and some quantitative agreement was found in

experiments performed in the 1000 cSt silicone (Si) oil system. Discrepancies in the exper-

iments performed in heavy mineral oil were thought to be due to the potential presence of

surface-acting components in the mineral oil.

Settling drop experiments performed in 1000 cSt Si oil fell much slower due to the in-

creased viscosity and density of the oil, and so surface diffusion became more important.

Treating the surface diffusion coefficient as a fitting parameter, good agreement between

theory and experiments for the majority of cases was found by using one set of sorption
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model constants and a single surface diffusion coefficient even as bulk concentrations and

drop volumes varied. The results both show to potential to use real surfactant transport

parameters to predict the velocities of these drops, although much more work needs to be

done.

This thesis succeeds in using experimentally determined surfactant sorption kinetics to

analyze, explain and predict some experimental observations in two interfacial fluid dynamics

problems. Direct comparisons between experiments and theory in these types of problems is

not common in the literature, but they are necessary if the theoretical tools at our disposal

are to be used in real engineering applications. The ability to make such comparisons has

been demonstrated here, but still much work needs to be done.

In the future it would be interesting to focus on the tail streaming in the horizontal

rotating tank problem from chapter 5. The very simple apparatus could provide a cheap and

easy method for creating emulsions and even encapsulating particles or cells. By robustly

characterizing the rate of drop production and size of drops produced in tail streaming, for

example, a cell concentration in the aqueous drop could be chosen to encapsulate roughly a

single cell in each broken-off droplet. Currently microfluidics are often used to encapsulate

cells for applications such as genome sequencing (114), and this could be a cheap alternative.

In the buoyancy-driven drop problem presented in this thesis it will be insightful to

include bulk diffusion and convection effects in side the drop. Constructing a larger experi-

mental tank for longer observation times and travel distances could also allow for observing

the effects of surfactants with very slow sorption kinetics. Using the boundary element

method with the experimentally determined sorption kinetics could also provide interesting

insight into flows containing multiple drops.
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APPENDIX ADDITIONAL INFORMATION FOR THE
BOUNDARY ELEMENT APPROACH

Cubic spline interpolation

For the boundary element method, cubic spline interpolation is used to determine the coor-

dinates along the ith boundary element between nodes i and i+ 1. The x and y coordinates

have the form

x(s) = Px,i(s) = Ax,i(s− si)3 +Bx,i(s− si)2 + Cx,i + xi (7.1)

and

y(s) = Py,i(s) = Ay,i(s− si)3 +By,i(s− si)2 + Cy,i + yi (7.2)

where si ≤ s ≤ si+1 and the coefficients are to be determined. Three conditions are satisfied

everywhere: x(si+1) = xi+1 and y(si+1) = yi+1, the first derivatives match at each node

approaching from either side, and the second derivatives match at each node approaching

from either side. For the x coordinates for example, this requires the following expressions

to be upheld:

xi+1 = xi + Ax,ih
3
i +Bx,ih

2
i + Cx,ihi, (7.3)

Cx,i+1 = Cx,i + 3Ax,ih
2
i + 2Bx,ihi, (7.4)

and
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Bx,i+1 = Bx,i + 3Ax,ihi, (7.5)

where hi = (si+1 − si). This is likewise for y coordinates. To complete the interpolation, a

periodic boundary condition is imposed so that, for x coordinates,

Cx,1 = 3Ax,Nh
2
N + 2Bx,NhN + Cx,N (7.6)

and

Bx,1 = Bx,N+1, (7.7)

where N is the number of nodes. Again the same is true for y coordinates. The above

equations result in a periodic tridiagonal matrix system of equations that can be solved

using the process outlined in A Practical Guide to Boundary Element Methods (107) to

determine the coefficients in eqs. 7.1 and 7.2.

Integrating the singular single layer potential

The boundary integral equation in chapter 4 consists of two integrals. The first integral is

the single layer potential and has a singularity that goes like −2ln|x− xo|. Integrating the

integral as is with standard Gauss-Legendre quadrature would result in considerable errors.

Instead the integral will be modified by subtracting the singularity and then integrating

the singularity separately. First we will rewrite the single layer potential integral using a

trapezoidal-like approximation to isolate the integration of the velocity Green’s functions G

(113),

∫
C

G(x,xo)∆f(x)d`(x) ≈ 1

S

∫
C

∆f(x)d`(x)

∫
C

G(x,xo)d`(x), (7.8)
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where S is the total arc length. Now focusing on the integration of G we subtract the

singularity and add it back separately:

∫
C

G(x,xo)d`(x) =

∫
C

[G(x,xo) + 2ln|x− xo|] d`(x)− 2

∫
C

ln|x− xo|d`(x). (7.9)

The problem now is solving the second integral on the right-hand side above. This is done

following the process in A Practical Guide to Boundary Element Methods (107). Consider

the integration of the singular integral over the ith boundary element. It then becomes

− 2

∫
Ci

ln|s− so|d`(x) = −2

si+1∫
si

ln
|x(s)− x(so)|

s− so
hi(s)ds− 2

si+1∫
si

ln|s− so|hi(s)ds (7.10)

where xo = x(so). The metric coefficients hi(s) are in terms of the cubic spline interpolation

coefficients,

hi(s) =

√
[3Ax,i(s− si)2 + 2Bx,i(s− si) + Cx,i]

2 + [3Ay,i(s− si)2 + 2By,i(s− si) + Cy,i]
2,

(7.11)

and s = 1
2
(si + si+1) + 1

2
(si+1 − si)ξ where ξ are the Gauss-Legendre quadrature abscissas.

The first integral on the right-hand side of eq. 7.10 is not singular but the second integral

is. This second integral is further modified:

−2

si+1∫
si

ln|s−so|hi(s)ds = −2

si+1∫
si

ln|s−so|[hi(s)−hi(so)]ds−2hi(so)

si+1∫
si

ln|s−so|ds. (7.12)

Finally the first integral on the right-hand side of eq. 7.12 can be integrated with Gauss-

Legendre quadrature and the second integral can be integrated analytically.
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Green’s functions

For an axisymmetric body in an unbounded domain, the velocity Green’s functions are

(109)

Gxx = yI10 + (x− xo)2I30

Gxy = (x− xo)(y2I30 − yyoI31)

Gyx = (x− xo)(y2I31 − yyoI30)

Gyy = yI11 + (y3 + yy2
o)I31 − y2yo(I30 + I32).

(7.13)

The stress Green’s functions are (109)

Txxx = −6y(x− xo)3I50

Txxy = −6(x− xo)2(y2I50 − yyoI51

Txyx = Txxy

Txyy = −6(x− xo)(yy2
oI52 + y3I50 − 2y2yoI51)

Tyxx = −6(x− xo)2(y2I51 −−yyoI50)

Tyxy = −6(x− xo)[(y3 + yy2
o)I51 − y2yo(I50 + I52)]

Tyyx = Tyxy

Tyyy = −6[y4I51 − y3yo(I50 + 2I52) + y2y2
o(I53 + 2I51)− y3

oI52].

(7.14)

The stress Green’s functions contain the integrals Imn(x− xo, y, yo) which are defined as

Imn =
4km

(4yyo)m/2

π/2∫
0

(2cos2ω − 1)n

(1− k2cos2ω)m/2
dω (7.15)

where k2 = (4yyo)/[(x−xo)2 + (y+ yo)
2] (109). To compute Imn the numerator in the above

integral is expanded resulting in an expression composed of complete elliptic integrals of the

first and second kind which have solutions tabulated in ref. (115).
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When de-singularizing the double layer potential for axisymmetric Stokes flow, a second

tensor is used, P (109; 107). This tensor is defined as

Pxx = Tyxx

Pxy = Tyxy

Pyx = −6(x− xo)(y3I52 + yy2
oI50 − 2y2yoI51

Pyy = −6[y4I52 − yy3
oI51 − y3yo(I53 + 2I51) + y2y2

o(I50 + 2I52)]

(7.16)
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